An imaging system for microbial corrosion analysis

L. Iannucci, L. Lombardo, M. Parvis, P. Cristiani, R. Basséguy, E. Angelini, S. Grassini
{"title":"An imaging system for microbial corrosion analysis","authors":"L. Iannucci, L. Lombardo, M. Parvis, P. Cristiani, R. Basséguy, E. Angelini, S. Grassini","doi":"10.1109/I2MTC.2019.8826965","DOIUrl":null,"url":null,"abstract":"This paper describes a viable and self-contained imaging system able to assess and quantify the effects of microbial corrosion on metals surface. The proposed image processing uses Scanning Electron Microscope micrographs to analyze bacteria attachment on sample surface and to estimate the degradation degree of the material. After a preliminary brightness and contrast normalization, which refines the image taken by the operator, the software is able to identify dark spots on the clear metal surface. These are then attributed to singly attached bacteria or to larger clusters, which are the most dangerous ones, as they could overlay corrosion pits. After that, the degradation of the material is evaluated through the quantification of microbial attachment on the surface and through dimensional distribution of bacteria clusters.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8826965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper describes a viable and self-contained imaging system able to assess and quantify the effects of microbial corrosion on metals surface. The proposed image processing uses Scanning Electron Microscope micrographs to analyze bacteria attachment on sample surface and to estimate the degradation degree of the material. After a preliminary brightness and contrast normalization, which refines the image taken by the operator, the software is able to identify dark spots on the clear metal surface. These are then attributed to singly attached bacteria or to larger clusters, which are the most dangerous ones, as they could overlay corrosion pits. After that, the degradation of the material is evaluated through the quantification of microbial attachment on the surface and through dimensional distribution of bacteria clusters.
用于微生物腐蚀分析的成像系统
本文描述了一种可行的、独立的成像系统,能够评估和量化微生物腐蚀对金属表面的影响。所提出的图像处理方法利用扫描电子显微镜显微照片分析样品表面的细菌附着,并估计材料的降解程度。在对操作员拍摄的图像进行初步的亮度和对比度归一化后,该软件能够识别出清晰金属表面上的黑点。这些被认为是单独附着的细菌或更大的细菌群,这是最危险的,因为它们可以覆盖腐蚀坑。之后,通过对材料表面微生物附着量的量化和细菌簇的尺寸分布来评价材料的降解情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信