A MapReduce framework for on-road mobile fossil fuel combustion CO2 emission estimation

Junyan Zhao, Junkui Zhang, Siqi Jia, Qi Li, Yue Zhu
{"title":"A MapReduce framework for on-road mobile fossil fuel combustion CO2 emission estimation","authors":"Junyan Zhao, Junkui Zhang, Siqi Jia, Qi Li, Yue Zhu","doi":"10.1109/GEOINFORMATICS.2011.5980759","DOIUrl":null,"url":null,"abstract":"Research of global climate change has an urgent need for the distribution of CO2 emissions with high spatial resolution. Traffic is an important carbon source in the urban development. Real-time data collected by the Intelligent Traffic System (ITS) plays a more and more significant role in the CO2 spatial-temporal distribution data production. However, the amount of data is so large that the data processing task has become a great challenge to the traditional data warehouse. MapReduce is a powerful framework for huge dataset processing on clusters of computers. In this paper, we proposed a MapReduce framework for on-road mobile fossil fuel combustion CO2 emission estimation. We implemented the emission estimation tool suite of our prototype based on Hadoop. The experiment result shows that the system is efficient and is suitable for this kind of applications.","PeriodicalId":413886,"journal":{"name":"2011 19th International Conference on Geoinformatics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2011.5980759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Research of global climate change has an urgent need for the distribution of CO2 emissions with high spatial resolution. Traffic is an important carbon source in the urban development. Real-time data collected by the Intelligent Traffic System (ITS) plays a more and more significant role in the CO2 spatial-temporal distribution data production. However, the amount of data is so large that the data processing task has become a great challenge to the traditional data warehouse. MapReduce is a powerful framework for huge dataset processing on clusters of computers. In this paper, we proposed a MapReduce framework for on-road mobile fossil fuel combustion CO2 emission estimation. We implemented the emission estimation tool suite of our prototype based on Hadoop. The experiment result shows that the system is efficient and is suitable for this kind of applications.
道路移动化石燃料燃烧CO2排放估算的MapReduce框架
全球气候变化研究迫切需要高空间分辨率的CO2排放分布。交通是城市发展的重要碳源。智能交通系统(ITS)实时采集的数据在CO2时空分布数据生产中发挥着越来越重要的作用。然而,由于数据量巨大,数据处理任务成为传统数据仓库面临的巨大挑战。MapReduce是一个强大的框架,用于在计算机集群上处理庞大的数据集。在本文中,我们提出了一个MapReduce框架用于道路移动化石燃料燃烧CO2排放估算。我们基于Hadoop实现了原型的排放估计工具套件。实验结果表明,该系统是高效的,适用于此类应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信