AC0 Unpredictability

Emanuele Viola
{"title":"AC0 Unpredictability","authors":"Emanuele Viola","doi":"10.1145/3442362","DOIUrl":null,"url":null,"abstract":"We prove that for every distribution D on n bits with Shannon entropy ≥ n − a, at most O(2da logd+1g)/γ5 of the bits Di can be predicted with advantage γ by an AC0 circuit of size g and depth D that is a function of all of the bits of D except Di. This answers a question by Meir and Wigderson, who proved a corresponding result for decision trees. We also show that there are distributions D with entropy ≥ n − O(1) such that any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that for every distribution D on n bits with Shannon entropy ≥ n − a, at most O(2da logd+1g)/γ5 of the bits Di can be predicted with advantage γ by an AC0 circuit of size g and depth D that is a function of all of the bits of D except Di. This answers a question by Meir and Wigderson, who proved a corresponding result for decision trees. We also show that there are distributions D with entropy ≥ n − O(1) such that any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.
AC0不可预测性
我们证明了对于Shannon熵≥n - a的n位分布D,可以用一个大小为g、深度为D的AC0电路预测最多O(2da logd+1g)/γ - 5位Di,该电路是D中除Di以外的所有位的函数。这回答了Meir和Wigderson的一个问题,他们证明了决策树的相应结果。我们还证明了存在熵≥n−O(1)的分布D,使得D on的O(n/ log n)位的任何子集都可以通过深度为2和大小为poly(n)的电路与均匀区分开。在这种情况下,这将可预测性和可区分性的概念区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信