{"title":"Introductory Chapter: Properties and Processing of Metallic Glasses","authors":"Hu Huang","doi":"10.5772/INTECHOPEN.78665","DOIUrl":null,"url":null,"abstract":"With an amorphous atomic structure, metallic glasses (MGs) (also called amorphous alloys) own some unique features compared to the conventional metal alloys, which make them versatile materials [1–7]. For example, MGs commonly show very high strength [8, 9], and thus they are very promising materials for fabrication of aircraft frames. High hardness and excellent resistance to wear make them potential candidates for contact applications such as phone’s shell. The high elasticity makes them suitable for applications as golf clubs or spring [10]. High-strength, low elastic modulus, and good corrosion resistance make MGs promising applications as biomedical materials [2]. Although great progress has been achieved for MGs in the past decades, their practical applications as structural and functional materials are greatly impeded due to three main problems [1, 11], that is, dimensional limit, poor tension plasticity, and hard-to-machining and shaping.","PeriodicalId":306056,"journal":{"name":"Metallic Glasses - Properties and Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Glasses - Properties and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With an amorphous atomic structure, metallic glasses (MGs) (also called amorphous alloys) own some unique features compared to the conventional metal alloys, which make them versatile materials [1–7]. For example, MGs commonly show very high strength [8, 9], and thus they are very promising materials for fabrication of aircraft frames. High hardness and excellent resistance to wear make them potential candidates for contact applications such as phone’s shell. The high elasticity makes them suitable for applications as golf clubs or spring [10]. High-strength, low elastic modulus, and good corrosion resistance make MGs promising applications as biomedical materials [2]. Although great progress has been achieved for MGs in the past decades, their practical applications as structural and functional materials are greatly impeded due to three main problems [1, 11], that is, dimensional limit, poor tension plasticity, and hard-to-machining and shaping.