{"title":"Optimization of Building Facade Voids Design, Facade Voids Position and Ratios - Wind Condition Relation","authors":"Enes Yasa","doi":"10.5772/INTECHOPEN.72697","DOIUrl":null,"url":null,"abstract":"The air flow between building interior and the courtyard to form via natural convection in hot-dry climatic regions are achieved with the help of wind pressure in other warm-humid and hot-humid climatic areas. Therefore, it is necessary to take into consideration and to humid other openings of the building which might change the effectiveness of the air movement to form due to wind effect in courtyard buildings. Therefore, wind tunnel experimental ways were developed and examined first in this study for the purpose of gaining knowledge on the effect of the wind on the cooling load of the atrium and courtyard buildings, and information to allow pre-estimation of the air flow to take place at the surface openings of such structures. Since numerical methods would not be enough alone in particular with regard to the wind, the planned study on the models was realized via the experimental method in a wind tunnel; and also Computational Fluid Dynamics numerical analyses were realized. This is a wind tunnel experimental study for the investigation of various architectural solutions for better cooling and ventilation through examination of the air flow passing through the surface openings of courtyard structures and for revelation of the effects of those results on the cooling and ventilation load. In this context, a courtyard building model was made to experi-ment on. Example courtyard building models were acquired by modifying various parameters (courtyard and gap area rates) to assess the test data from the boundary layer wind tunnel of wind-supported natural ventilation event of the example model courtyard structure used in the study.","PeriodicalId":191588,"journal":{"name":"Sustainable Buildings - Interaction Between a Holistic Conceptual Act and Materials Properties","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Buildings - Interaction Between a Holistic Conceptual Act and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.72697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The air flow between building interior and the courtyard to form via natural convection in hot-dry climatic regions are achieved with the help of wind pressure in other warm-humid and hot-humid climatic areas. Therefore, it is necessary to take into consideration and to humid other openings of the building which might change the effectiveness of the air movement to form due to wind effect in courtyard buildings. Therefore, wind tunnel experimental ways were developed and examined first in this study for the purpose of gaining knowledge on the effect of the wind on the cooling load of the atrium and courtyard buildings, and information to allow pre-estimation of the air flow to take place at the surface openings of such structures. Since numerical methods would not be enough alone in particular with regard to the wind, the planned study on the models was realized via the experimental method in a wind tunnel; and also Computational Fluid Dynamics numerical analyses were realized. This is a wind tunnel experimental study for the investigation of various architectural solutions for better cooling and ventilation through examination of the air flow passing through the surface openings of courtyard structures and for revelation of the effects of those results on the cooling and ventilation load. In this context, a courtyard building model was made to experi-ment on. Example courtyard building models were acquired by modifying various parameters (courtyard and gap area rates) to assess the test data from the boundary layer wind tunnel of wind-supported natural ventilation event of the example model courtyard structure used in the study.