RePack: Dense Object Packing Using Deep CNN with Reinforcement Learning

Yu-Cheng Chu, Horng-Horng Lin
{"title":"RePack: Dense Object Packing Using Deep CNN with Reinforcement Learning","authors":"Yu-Cheng Chu, Horng-Horng Lin","doi":"10.1109/CACS47674.2019.9024360","DOIUrl":null,"url":null,"abstract":"We propose a new object packing approach, RePack, to arrange a series of identical image objects to a rectangular canvas densely by a deep CNN with reinforcement learning. In our approach, adding a new object to an image pack of existing objects is modeled as classification of possible pack configurations by a CNN. To iteratively reinforce the CNN, pack trees are built to identify object overlaps and to find denser pack configurations for reinforcement training. Such a reinforcement learning process for enhancing a CNN for dense object packing is rarely seen in previous literature. Preliminary experimental results show that the reinforced deep CNN can generate dense object packs in a sequential manner for circular, triangular and quadrilateral objects.","PeriodicalId":247039,"journal":{"name":"2019 International Automatic Control Conference (CACS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS47674.2019.9024360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new object packing approach, RePack, to arrange a series of identical image objects to a rectangular canvas densely by a deep CNN with reinforcement learning. In our approach, adding a new object to an image pack of existing objects is modeled as classification of possible pack configurations by a CNN. To iteratively reinforce the CNN, pack trees are built to identify object overlaps and to find denser pack configurations for reinforcement training. Such a reinforcement learning process for enhancing a CNN for dense object packing is rarely seen in previous literature. Preliminary experimental results show that the reinforced deep CNN can generate dense object packs in a sequential manner for circular, triangular and quadrilateral objects.
RePack:使用深度CNN和强化学习进行密集对象打包
我们提出了一种新的对象打包方法——RePack,通过深度CNN的强化学习,将一系列相同的图像对象密集地排列到矩形画布上。在我们的方法中,将新对象添加到现有对象的图像包中,通过CNN对可能的包配置进行分类。为了迭代强化CNN,构建包树来识别对象重叠,并找到更密集的包配置进行强化训练。这种强化学习过程对CNN进行密集对象包装的增强在以往文献中很少见到。初步实验结果表明,增强的深度CNN可以对圆形、三角形和四边形的物体按顺序生成密集的物体包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信