Affine flag varieties

P. Scholze, Jared Weinstein
{"title":"Affine flag varieties","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.24","DOIUrl":null,"url":null,"abstract":"This chapter reviews affine flag varieties. It generalizes some of the previous results to the case where G over Zp is a parahoric group scheme. In fact, slightly more generally, it allows the case that the special fiber is not connected, with connected component of the identity G? being a parahoric group scheme. This case comes up naturally in the classical definition of Rapoport-Zink spaces. The chapter first discusses the Witt vector affine flag variety over Fp. This is an increasing union of perfections of quasiprojective varieties along closed immersions. In the case that G° is parahoric, one gets ind-properness.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter reviews affine flag varieties. It generalizes some of the previous results to the case where G over Zp is a parahoric group scheme. In fact, slightly more generally, it allows the case that the special fiber is not connected, with connected component of the identity G? being a parahoric group scheme. This case comes up naturally in the classical definition of Rapoport-Zink spaces. The chapter first discusses the Witt vector affine flag variety over Fp. This is an increasing union of perfections of quasiprojective varieties along closed immersions. In the case that G° is parahoric, one gets ind-properness.
仿射标志品种
本章回顾仿射标志的种类。它将以前的一些结果推广到G / Zp是旁群格式的情况。事实上,更一般地说,它允许特殊光纤不连接的情况,与单位G?这是一个反集体计划。这种情况自然出现在经典的Rapoport-Zink空间定义中。本章首先讨论了Fp上Witt矢量仿射标志的变化。这是沿封闭浸没的拟射影变种的完美度的一个不断增加的结合。在G°是副性的情况下,我们得到非正性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信