{"title":"TAP: A TLP-aware cache management policy for a CPU-GPU heterogeneous architecture","authors":"Jaekyu Lee, Hyesoon Kim","doi":"10.1109/HPCA.2012.6168947","DOIUrl":null,"url":null,"abstract":"Combining CPUs and GPUs on the same chip has become a popular architectural trend. However, these heterogeneous architectures put more pressure on shared resource management. In particular, managing the last-level cache (LLC) is very critical to performance. Lately, many researchers have proposed several shared cache management mechanisms, including dynamic cache partitioning and promotion-based cache management, but no cache management work has been done on CPU-GPU heterogeneous architectures. Sharing the LLC between CPUs and GPUs brings new challenges due to the different characteristics of CPU and GPGPU applications. Unlike most memory-intensive CPU benchmarks that hide memory latency with caching, many GPGPU applications hide memory latency by combining thread-level parallelism (TLP) and caching. In this paper, we propose a TLP-aware cache management policy for CPU-GPU heterogeneous architectures. We introduce a core-sampling mechanism to detect how caching affects the performance of a GPGPU application. Inspired by previous cache management schemes, Utility-based Cache Partitioning (UCP) and Re-Reference Interval Prediction (RRIP), we propose two new mechanisms: TAP-UCP and TAP-RRIP. TAP-UCP improves performance by 5% over UCP and 11% over LRU on 152 heterogeneous workloads, and TAP-RRIP improves performance by 9% over RRIP and 12% over LRU.","PeriodicalId":380383,"journal":{"name":"IEEE International Symposium on High-Performance Comp Architecture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Comp Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2012.6168947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121
Abstract
Combining CPUs and GPUs on the same chip has become a popular architectural trend. However, these heterogeneous architectures put more pressure on shared resource management. In particular, managing the last-level cache (LLC) is very critical to performance. Lately, many researchers have proposed several shared cache management mechanisms, including dynamic cache partitioning and promotion-based cache management, but no cache management work has been done on CPU-GPU heterogeneous architectures. Sharing the LLC between CPUs and GPUs brings new challenges due to the different characteristics of CPU and GPGPU applications. Unlike most memory-intensive CPU benchmarks that hide memory latency with caching, many GPGPU applications hide memory latency by combining thread-level parallelism (TLP) and caching. In this paper, we propose a TLP-aware cache management policy for CPU-GPU heterogeneous architectures. We introduce a core-sampling mechanism to detect how caching affects the performance of a GPGPU application. Inspired by previous cache management schemes, Utility-based Cache Partitioning (UCP) and Re-Reference Interval Prediction (RRIP), we propose two new mechanisms: TAP-UCP and TAP-RRIP. TAP-UCP improves performance by 5% over UCP and 11% over LRU on 152 heterogeneous workloads, and TAP-RRIP improves performance by 9% over RRIP and 12% over LRU.