Neural networks applied to the classification of spectral features for automatic modulation recognition

N. Ghani, R. Lamontagne
{"title":"Neural networks applied to the classification of spectral features for automatic modulation recognition","authors":"N. Ghani, R. Lamontagne","doi":"10.1109/MILCOM.1993.408536","DOIUrl":null,"url":null,"abstract":"The use of back-error propagation neural networks for the automatic modulation recognition (AMR) of an intercepted signal is demonstrated. In all, ten modulation types are considered and a variety of spectral preprocessors are investigated for feature extraction. For the given training and test sets, the Welch periodogram is found to give the best results. For classification, experimental results show that neural networks match and even outdo the performance of the conventional k-nearest neighbor (k-NN) classifier for this preprocessor. Moreover, optimization of selected neural networks is demonstrated using the optimal brain damage (OBD) pruning technique.<<ETX>>","PeriodicalId":323612,"journal":{"name":"Proceedings of MILCOM '93 - IEEE Military Communications Conference","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MILCOM '93 - IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.1993.408536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

The use of back-error propagation neural networks for the automatic modulation recognition (AMR) of an intercepted signal is demonstrated. In all, ten modulation types are considered and a variety of spectral preprocessors are investigated for feature extraction. For the given training and test sets, the Welch periodogram is found to give the best results. For classification, experimental results show that neural networks match and even outdo the performance of the conventional k-nearest neighbor (k-NN) classifier for this preprocessor. Moreover, optimization of selected neural networks is demonstrated using the optimal brain damage (OBD) pruning technique.<>
应用神经网络对光谱特征进行分类,实现自动调制识别
介绍了利用反向误差传播神经网络对截获信号进行自动调制识别的方法。总共考虑了十种调制类型,并研究了各种光谱预处理器用于特征提取。对于给定的训练集和测试集,发现Welch周期图给出了最好的结果。在分类方面,实验结果表明,对于该预处理器,神经网络的分类性能与传统的k-近邻(k-NN)分类器相当,甚至优于后者。此外,优选的神经网络被证明使用最优脑损伤(OBD)修剪技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信