On the hyperbolic length and quasiconformal mappings

H. Shiga
{"title":"On the hyperbolic length and quasiconformal mappings","authors":"H. Shiga","doi":"10.1080/02781070412331328206","DOIUrl":null,"url":null,"abstract":"Let ϕ : R → S be a K-quasiconformal mapping of a hyperbolic Riemann surface R to another S. It is important to see how the hyperbolic structure is changed by ϕ. S. Wolpert (1979, The length spectrum as moduli for compact Riemann surfaces. Ann. of Math. 109, 323–351) shows that the length of a closed geodesic is quasi-invariant. Recently, A. Basmajian (2000, Quasiconformal mappings and geodesics in the hyperbolic plane, in The Tradition of Ahlfors and Bers, Contemp. Math. 256, 1–4) gives a variational formula of distances between geodesics in the upper half-plane. In this article, we improve and generalize Basmajian's result. We also generalize Wolpert's formula for loxodromic transformations.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070412331328206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let ϕ : R → S be a K-quasiconformal mapping of a hyperbolic Riemann surface R to another S. It is important to see how the hyperbolic structure is changed by ϕ. S. Wolpert (1979, The length spectrum as moduli for compact Riemann surfaces. Ann. of Math. 109, 323–351) shows that the length of a closed geodesic is quasi-invariant. Recently, A. Basmajian (2000, Quasiconformal mappings and geodesics in the hyperbolic plane, in The Tradition of Ahlfors and Bers, Contemp. Math. 256, 1–4) gives a variational formula of distances between geodesics in the upper half-plane. In this article, we improve and generalize Basmajian's result. We also generalize Wolpert's formula for loxodromic transformations.
关于双曲长度和拟共形映射
设φ: R→S是双曲黎曼曲面R到另一个S的k -拟共形映射。重要的是要看到双曲结构如何被φ改变。S. Wolpert(1979),长度谱作为紧致黎曼曲面的模。安。数学学报,109,323-351)证明了封闭测地线的长度是准不变的。最近,A. Basmajian(2000),双曲平面上的拟共形映射和测大地线,载于《the Tradition of Ahlfors and Bers》,当代。数学。256,1-4)给出了上半平面测地线之间距离的变分公式。在本文中,我们改进和推广了Basmajian的结果。我们也推广了Wolpert公式用于变形变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信