Enhancing curvature scale space features for robust shape classification

S. Kopf, T. Haenselmann, W. Effelsberg
{"title":"Enhancing curvature scale space features for robust shape classification","authors":"S. Kopf, T. Haenselmann, W. Effelsberg","doi":"10.1109/ICME.2005.1521464","DOIUrl":null,"url":null,"abstract":"The curvature scale space (CSS) technique, which is also part of the MPEG-7 standard, is a robust method to describe complex shapes. The central idea is to analyze the curvature of a shape and derive features from inflection points. A major drawback of the CSS method is its poor representation of convex segments: Convex objects cannot be represented at all due to missing inflection points. We have extended the CSS approach to generate feature points for concave and convex segments of a shape. This generic approach is applicable to arbitrary objects. In the experimental results, we evaluate as a comprehensive example the automatic recognition of characters in images and videos.","PeriodicalId":244360,"journal":{"name":"2005 IEEE International Conference on Multimedia and Expo","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2005.1521464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The curvature scale space (CSS) technique, which is also part of the MPEG-7 standard, is a robust method to describe complex shapes. The central idea is to analyze the curvature of a shape and derive features from inflection points. A major drawback of the CSS method is its poor representation of convex segments: Convex objects cannot be represented at all due to missing inflection points. We have extended the CSS approach to generate feature points for concave and convex segments of a shape. This generic approach is applicable to arbitrary objects. In the experimental results, we evaluate as a comprehensive example the automatic recognition of characters in images and videos.
增强曲率尺度空间特征,实现鲁棒形状分类
曲率尺度空间(CSS)技术是描述复杂形状的一种鲁棒方法,也是MPEG-7标准的一部分。其核心思想是分析形状的曲率,并从拐点导出特征。CSS方法的一个主要缺点是它对凸段的表示很差:由于缺少拐点,凸对象根本无法表示。我们扩展了CSS方法来为形状的凹段和凸段生成特征点。这种通用方法适用于任意对象。在实验结果中,我们对图像和视频中字符的自动识别进行了综合评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信