Pattern recognition using 3-D moments

Chong-Huah Lo, H. Don
{"title":"Pattern recognition using 3-D moments","authors":"Chong-Huah Lo, H. Don","doi":"10.1109/ICPR.1990.118161","DOIUrl":null,"url":null,"abstract":"A 3-D moment method of object identification and positioning is proposed. Moments are computed from 3-D CAT image functions, 2.5-D range data, space curves, and discrete 3-D points. Objects are recognized by their shapes via moment invariants. Using an algebraic method, scalars and vectors are extracted from a compound of moments using Clebsch-Gordon expansion. The vectors are used to estimate position parameters of the object. Moment features of range data can be used in view-independent object recognition when the three-layer perceptron encodes the feature space distribution of the object in the weights of the network. Objects are recognized from an arbitrary viewpoint by the trained network.<<ETX>>","PeriodicalId":135937,"journal":{"name":"[1990] Proceedings. 10th International Conference on Pattern Recognition","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. 10th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1990.118161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A 3-D moment method of object identification and positioning is proposed. Moments are computed from 3-D CAT image functions, 2.5-D range data, space curves, and discrete 3-D points. Objects are recognized by their shapes via moment invariants. Using an algebraic method, scalars and vectors are extracted from a compound of moments using Clebsch-Gordon expansion. The vectors are used to estimate position parameters of the object. Moment features of range data can be used in view-independent object recognition when the three-layer perceptron encodes the feature space distribution of the object in the weights of the network. Objects are recognized from an arbitrary viewpoint by the trained network.<>
基于三维矩的模式识别
提出了一种三维矩量目标识别与定位方法。从三维CAT图像函数、2.5维距离数据、空间曲线和离散的三维点计算矩。物体的形状通过矩不变量来识别。采用代数方法,利用Clebsch-Gordon展开从矩的复合中提取标量和向量。这些矢量用于估计目标的位置参数。当三层感知器在网络权值中编码目标的特征空间分布时,就可以利用距离数据的矩特征进行视觉无关的目标识别。训练后的网络从任意视点识别物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信