A novel HashedNets model based on the efficient hyperparameter optimization

Qin Fang, Jianxia Chen, Zhongbao Ma, Chao Li, Jie Zhang, Yixin Chen, Qiang Lv
{"title":"A novel HashedNets model based on the efficient hyperparameter optimization","authors":"Qin Fang, Jianxia Chen, Zhongbao Ma, Chao Li, Jie Zhang, Yixin Chen, Qiang Lv","doi":"10.1109/ICSAI.2017.8248458","DOIUrl":null,"url":null,"abstract":"The research of neural networks compression becomes a hot spot in the AI area. In this paper, we propose a novel method to optimize the hyperparameters of a compression Neural Networks called HashedNets with Radial Basis Function (RBF) interpolation model and Dynamic Coordinate Search (DYCORS) method, the proposed model is called HD-HORD which can help the HashedNets search for the best hyperparameters automatically and efficiently. Experimental results show that the efficiency of HD-HORD can be improved 72% faster than other methods.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research of neural networks compression becomes a hot spot in the AI area. In this paper, we propose a novel method to optimize the hyperparameters of a compression Neural Networks called HashedNets with Radial Basis Function (RBF) interpolation model and Dynamic Coordinate Search (DYCORS) method, the proposed model is called HD-HORD which can help the HashedNets search for the best hyperparameters automatically and efficiently. Experimental results show that the efficiency of HD-HORD can be improved 72% faster than other methods.
基于高效超参数优化的新型哈希网模型
神经网络压缩的研究成为人工智能领域的一个热点。本文提出了一种利用径向基函数(RBF)插值模型和动态坐标搜索(DYCORS)方法对压缩神经网络hashhednets的超参数进行优化的新方法,该方法被称为HD-HORD模型,它可以帮助hashhednets自动高效地搜索最优的超参数。实验结果表明,HD-HORD的效率比其他方法提高了72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信