Asteroid: scalable online memory diagnostics

Musfiq Rahman, B. Childers
{"title":"Asteroid: scalable online memory diagnostics","authors":"Musfiq Rahman, B. Childers","doi":"10.1145/2742854.2742861","DOIUrl":null,"url":null,"abstract":"Memory diagnostics play an important role in addressing the worsening resilience problem for DRAM main memory. As device scales reach the extremes of physical limits, memory is becoming more prone to transient and permanent errors. Online memory diagnostics can be used as part of a comprehensive strategy to mitigate errors. This paper presents a new approach, Asteroid, to incorporate memory diagnostics in a system actively serving a workload. The approach dynamically adjusts itself to workload behavior and resource availability to maximize test thoroughness and minimize performance overhead. In a 16-core enterprise server, Asteroid has modest overhead of 1% to 4% for workloads with low to high memory demand.","PeriodicalId":417279,"journal":{"name":"Proceedings of the 12th ACM International Conference on Computing Frontiers","volume":"84 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742854.2742861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Memory diagnostics play an important role in addressing the worsening resilience problem for DRAM main memory. As device scales reach the extremes of physical limits, memory is becoming more prone to transient and permanent errors. Online memory diagnostics can be used as part of a comprehensive strategy to mitigate errors. This paper presents a new approach, Asteroid, to incorporate memory diagnostics in a system actively serving a workload. The approach dynamically adjusts itself to workload behavior and resource availability to maximize test thoroughness and minimize performance overhead. In a 16-core enterprise server, Asteroid has modest overhead of 1% to 4% for workloads with low to high memory demand.
小行星:可扩展的在线内存诊断
内存诊断在解决DRAM主存日益恶化的弹性问题中起着重要的作用。随着设备规模达到物理极限,内存变得越来越容易出现瞬时和永久错误。在线内存诊断可以作为减少错误的综合策略的一部分。本文提出了一种新的方法,Asteroid,将内存诊断集成到一个主动服务于工作负载的系统中。该方法根据工作负载行为和资源可用性动态调整自身,以最大化测试彻底性并最小化性能开销。在16核企业服务器中,对于内存需求从低到高的工作负载,Asteroid的开销为1%到4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信