iSentenizer: An incremental sentence boundary classifier

F. Wong, S. Chao
{"title":"iSentenizer: An incremental sentence boundary classifier","authors":"F. Wong, S. Chao","doi":"10.1109/NLPKE.2010.5587856","DOIUrl":null,"url":null,"abstract":"In this paper, we revisited the topic of sentence boundary detection, and proposed an incremental approach to tackle the problem. The boundary classifier is revised on the fly to adapt to the text of high variety of sources and genres. We applied i+Learning, an incremental algorithm, for constructing the sentence boundary detection model using different features based on local context. Although the model can be easily trained on any genre of text and on any alphabet language, we emphasize the ability that the classifier is adaptable to text with domain and topic shifts without retraining the whole model from scratch. Empirical results indicate that the performance of proposed system is comparable to that of similar systems.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we revisited the topic of sentence boundary detection, and proposed an incremental approach to tackle the problem. The boundary classifier is revised on the fly to adapt to the text of high variety of sources and genres. We applied i+Learning, an incremental algorithm, for constructing the sentence boundary detection model using different features based on local context. Although the model can be easily trained on any genre of text and on any alphabet language, we emphasize the ability that the classifier is adaptable to text with domain and topic shifts without retraining the whole model from scratch. Empirical results indicate that the performance of proposed system is comparable to that of similar systems.
iSentenizer:一个增量式句子边界分类器
在本文中,我们重新审视了句子边界检测的主题,并提出了一种增量方法来解决这个问题。边界分类器是动态修改的,以适应各种来源和体裁的文本。采用i+Learning增量算法,基于局部语境,利用不同特征构建句子边界检测模型。尽管该模型可以很容易地在任何类型的文本和任何字母语言上进行训练,但我们强调分类器适应具有领域和主题变化的文本的能力,而无需从头开始重新训练整个模型。实证结果表明,该系统的性能与同类系统相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信