Image Patch Similarity Through a Meta-Learning Metric Based Approach

Patricia L. Suárez, A. Sappa, B. Vintimilla
{"title":"Image Patch Similarity Through a Meta-Learning Metric Based Approach","authors":"Patricia L. Suárez, A. Sappa, B. Vintimilla","doi":"10.1109/SITIS.2019.00087","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach to learn the best representation of the image patches to determine the similarity degree between cross-spectral regions (patches). The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.","PeriodicalId":301876,"journal":{"name":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2019.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel approach to learn the best representation of the image patches to determine the similarity degree between cross-spectral regions (patches). The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
基于元学习度量的图像贴片相似度方法
本文提出了一种新的方法来学习图像斑块的最佳表示,以确定跨光谱区域(斑块)之间的相似度。目前的工作使用基于少量度量的元学习框架来解决这个问题,该框架能够比较图像区域并确定相似性度量,以确定比较补丁之间是否存在相似性。我们的模型是从头开始进行端到端的训练。实验结果表明,该方法能有效地估计出斑块的相似度,并与现有方法进行比较,取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信