Event-Based Electric Vehicle Mass and Grade Estimation

Khalil Maleej, S. Kelouwani, Y. Dubé, K. Agbossou
{"title":"Event-Based Electric Vehicle Mass and Grade Estimation","authors":"Khalil Maleej, S. Kelouwani, Y. Dubé, K. Agbossou","doi":"10.1109/VPPC.2014.7007066","DOIUrl":null,"url":null,"abstract":"This work investigates an event-based electric vehicle mass and grade estimation using a Recursive Least Squares (RSL) with variable forgetting factors method. Given the vehicle speed and electric power consumption, we proposed a two-layer identification architecture in which the first layer provides acceleration and cruise motion periods, whereas the second layer is responsible for mass and grade parameter estimations. The forgetting factors are updated based on the vehicle acceleration values. The proposed method does not require torque measurements from the propulsion system. Therefore, it can be used for different type of vehicles. The preliminary comparative study suggests that the proposed method is efficient and can provide satisfactory results even in presence of noisy measurements.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work investigates an event-based electric vehicle mass and grade estimation using a Recursive Least Squares (RSL) with variable forgetting factors method. Given the vehicle speed and electric power consumption, we proposed a two-layer identification architecture in which the first layer provides acceleration and cruise motion periods, whereas the second layer is responsible for mass and grade parameter estimations. The forgetting factors are updated based on the vehicle acceleration values. The proposed method does not require torque measurements from the propulsion system. Therefore, it can be used for different type of vehicles. The preliminary comparative study suggests that the proposed method is efficient and can provide satisfactory results even in presence of noisy measurements.
基于事件的电动汽车质量与等级估算
本文研究了一种基于事件的电动汽车质量和等级估计方法,该方法采用了带可变遗忘因子的递归最小二乘方法。考虑到车辆的速度和电力消耗,我们提出了一个两层识别架构,其中第一层提供加速和巡航运动周期,而第二层负责质量和坡度参数估计。遗忘因子根据车辆加速度值进行更新。所提出的方法不需要从推进系统测量扭矩。因此,它可以用于不同类型的车辆。初步的对比研究表明,该方法是有效的,即使在存在噪声的情况下也能提供令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信