User Dependent Template Update for Keystroke Dynamics Recognition

Abir Mhenni, E. Cherrier, C. Rosenberger, N. Amara
{"title":"User Dependent Template Update for Keystroke Dynamics Recognition","authors":"Abir Mhenni, E. Cherrier, C. Rosenberger, N. Amara","doi":"10.1109/CW.2018.00066","DOIUrl":null,"url":null,"abstract":"Regarding the fact that individuals have different interactions with biometric authentication systems, several techniques have been developed in the literature to model different users categories. Doddington Zoo is a concept of categorizing users behaviors into animal groups to reflect their characteristics with respect to biometric systems. This concept was developed for different biometric modalities including keystroke dynamics. The present study extends this biometric classification, by proposing a novel adaptive strategy based on the Doddinghton Zoo, for the recognition of the user's keystroke dynamics. The obtained results demonstrate competitive performances on significant keystroke dynamics datasets.","PeriodicalId":388539,"journal":{"name":"2018 International Conference on Cyberworlds (CW)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2018.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Regarding the fact that individuals have different interactions with biometric authentication systems, several techniques have been developed in the literature to model different users categories. Doddington Zoo is a concept of categorizing users behaviors into animal groups to reflect their characteristics with respect to biometric systems. This concept was developed for different biometric modalities including keystroke dynamics. The present study extends this biometric classification, by proposing a novel adaptive strategy based on the Doddinghton Zoo, for the recognition of the user's keystroke dynamics. The obtained results demonstrate competitive performances on significant keystroke dynamics datasets.
用户依赖的模板更新击键动力学识别
鉴于个体与生物识别认证系统之间存在不同的交互,文献中已经开发了几种技术来模拟不同的用户类别。Doddington Zoo是一种将用户行为分类为动物群体的概念,以反映他们在生物识别系统方面的特征。这个概念是为不同的生物识别模式开发的,包括击键动力学。目前的研究扩展了这种生物识别分类,提出了一种基于多丁顿动物园的新的自适应策略,用于识别用户的击键动力学。所得结果在重要的击键动力学数据集上显示了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信