P. Nejedly, Adam Ivora, R. Smíšek, I. Viscor, Zuzana Koscova, P. Jurák, F. Plesinger
{"title":"Classification of ECG Using Ensemble of Residual CNNs with Attention Mechanism","authors":"P. Nejedly, Adam Ivora, R. Smíšek, I. Viscor, Zuzana Koscova, P. Jurák, F. Plesinger","doi":"10.23919/cinc53138.2021.9662723","DOIUrl":null,"url":null,"abstract":"This paper introduces a winning solution (team ISIBrno-AIMT) to the PhysioNet Challenge 2021. The method is based on the ResNet deep neural network architecture with a multi-head attention mechanism for ECG classification into 26 independent groups. The model is optimized using a mixture of loss functions, i.e., binary cross-entropy, custom challenge score loss function, and sparsity loss function. Probability thresholds for each classification class are estimated using the evolutionary optimization method. The final model consists of three submodels forming a majority voting classification ensemble. The proposed method classifies ECGs with a variable number of leads, e.g., 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead. The algorithm was validated and tested on the external hidden datasets (CPSC, G12EC, undisclosed set, UMich), achieving a challenge score 0.58 for all tested lead configurations. The total training time was approximately 27 hours, i.e., 9 hours per model. The presented solution was ranked first across all 39 teams in all categories.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper introduces a winning solution (team ISIBrno-AIMT) to the PhysioNet Challenge 2021. The method is based on the ResNet deep neural network architecture with a multi-head attention mechanism for ECG classification into 26 independent groups. The model is optimized using a mixture of loss functions, i.e., binary cross-entropy, custom challenge score loss function, and sparsity loss function. Probability thresholds for each classification class are estimated using the evolutionary optimization method. The final model consists of three submodels forming a majority voting classification ensemble. The proposed method classifies ECGs with a variable number of leads, e.g., 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead. The algorithm was validated and tested on the external hidden datasets (CPSC, G12EC, undisclosed set, UMich), achieving a challenge score 0.58 for all tested lead configurations. The total training time was approximately 27 hours, i.e., 9 hours per model. The presented solution was ranked first across all 39 teams in all categories.