{"title":"Modulo-variable expansion sensitive scheduling","authors":"M. Valluri, R. Govindarajan","doi":"10.1109/HIPC.1998.738006","DOIUrl":null,"url":null,"abstract":"Modulo scheduling is an aggressive scheduling technique for loops that exploit instruction-level parallelism by overlapping successive iterations of the loop. Due to the nature of modulo scheduling, the lifetime of a variable can overlap with a subsequent definition of itself. To handle such overlapping lifetimes, modulo-variable expansion (MVE) is used, wherein the constructed schedule is unrolled a number of times. We propose a technique to improve the constructed schedule while performing MVE. In our approach, we unroll the data dependence graph of the original loop and re-schedule it with a MVE-sensitive scheduler. Such an approach is expected to result in better initiation rates as compared to the traditional approach. We have implemented our approach and evaluated its performance on a large number of scientific benchmark kernels.","PeriodicalId":175528,"journal":{"name":"Proceedings. Fifth International Conference on High Performance Computing (Cat. No. 98EX238)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fifth International Conference on High Performance Computing (Cat. No. 98EX238)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIPC.1998.738006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Modulo scheduling is an aggressive scheduling technique for loops that exploit instruction-level parallelism by overlapping successive iterations of the loop. Due to the nature of modulo scheduling, the lifetime of a variable can overlap with a subsequent definition of itself. To handle such overlapping lifetimes, modulo-variable expansion (MVE) is used, wherein the constructed schedule is unrolled a number of times. We propose a technique to improve the constructed schedule while performing MVE. In our approach, we unroll the data dependence graph of the original loop and re-schedule it with a MVE-sensitive scheduler. Such an approach is expected to result in better initiation rates as compared to the traditional approach. We have implemented our approach and evaluated its performance on a large number of scientific benchmark kernels.