Cauchy an Innovative Mathematician: the Fundamentals of Infinitesimal Calculus, the Theorem of Finite Increments and the Functions of an "Imaginary" Variable

Boniello Carmine
{"title":"Cauchy an Innovative Mathematician: the Fundamentals of Infinitesimal Calculus, the Theorem of Finite Increments and the Functions of an \"Imaginary\" Variable","authors":"Boniello Carmine","doi":"10.51505/ijaemr.2022.7215","DOIUrl":null,"url":null,"abstract":"Calculus is the founding branch of mathematical analysis that studies the \"local behavior\" of a function through the notions of continuity and limit, used in almost all fields of mathematics and physics and science in general. In the article we wanted to highlight through Cauchy the objectives of infinitesimal analysis expand and include complex analysis. In the second part of the work we concentrated on the finite increment theorem. It is one of the classical theorems of Mathematical Analysis, whose importance is justified by the fact that Lagrange's theorem turns out to be a trivial consequence. Finally, we will highlight its contribution to the functions of an imaginary variable: it is a contribution of fundamental importance for mathematics scholars of all times.","PeriodicalId":354718,"journal":{"name":"International Journal of Advanced Engineering and Management Research","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Engineering and Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51505/ijaemr.2022.7215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Calculus is the founding branch of mathematical analysis that studies the "local behavior" of a function through the notions of continuity and limit, used in almost all fields of mathematics and physics and science in general. In the article we wanted to highlight through Cauchy the objectives of infinitesimal analysis expand and include complex analysis. In the second part of the work we concentrated on the finite increment theorem. It is one of the classical theorems of Mathematical Analysis, whose importance is justified by the fact that Lagrange's theorem turns out to be a trivial consequence. Finally, we will highlight its contribution to the functions of an imaginary variable: it is a contribution of fundamental importance for mathematics scholars of all times.
柯西是一位创新的数学家:微积分的基础,有限增量定理和虚变量的函数
微积分是数学分析的基础分支,它通过连续性和极限的概念来研究函数的“局部行为”,在数学、物理和一般科学的几乎所有领域都有应用。在本文中,我们想通过柯西强调无穷小分析的目标扩展和包括复分析。在第二部分中,我们集中讨论了有限增量定理。它是数学分析中的经典定理之一,拉格朗日定理是一个微不足道的结果,这一事实证明了它的重要性。最后,我们将强调它对虚变量函数的贡献:它对所有时代的数学学者都是至关重要的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信