Positional Mask Attention for Video Sequence Modeling

Jiaxuan Wang, Chaoyi Wang, Yang Hua, Tao Song, Zhengui Xue, Ruhui Ma, Haibing Guan
{"title":"Positional Mask Attention for Video Sequence Modeling","authors":"Jiaxuan Wang, Chaoyi Wang, Yang Hua, Tao Song, Zhengui Xue, Ruhui Ma, Haibing Guan","doi":"10.1109/CISP-BMEI53629.2021.9624361","DOIUrl":null,"url":null,"abstract":"The attention mechanism has been widely developed in different domains. Some recent studies apply position embedding to encode relative positions in the attention mechanism for learning better representations in both natural language processing and computer vision tasks. However, this position embedding method is limited to the “fixed input size” problem and requires large additional memory to store the position embedding parameters. In this paper, we present the positional mask attention, which is a new approach to incorporate position information into the attention mechanism. Specifically, a positional distance mask is proposed to encode the relative positions as a type of prior knowledge, which is different from the existing position embedding methods. To verify the generality and effectiveness of the proposed method, we evaluate our positional mask attention on two general video understanding tasks, i.e., video object detection and video instance segmentation. Experimental results demonstrate that our method can achieve significant improvement by aggregating the position information.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The attention mechanism has been widely developed in different domains. Some recent studies apply position embedding to encode relative positions in the attention mechanism for learning better representations in both natural language processing and computer vision tasks. However, this position embedding method is limited to the “fixed input size” problem and requires large additional memory to store the position embedding parameters. In this paper, we present the positional mask attention, which is a new approach to incorporate position information into the attention mechanism. Specifically, a positional distance mask is proposed to encode the relative positions as a type of prior knowledge, which is different from the existing position embedding methods. To verify the generality and effectiveness of the proposed method, we evaluate our positional mask attention on two general video understanding tasks, i.e., video object detection and video instance segmentation. Experimental results demonstrate that our method can achieve significant improvement by aggregating the position information.
视频序列建模中的位置掩码注意事项
注意机制在不同领域得到了广泛的发展。最近的一些研究应用位置嵌入对注意机制中的相对位置进行编码,以便在自然语言处理和计算机视觉任务中学习更好的表征。然而,这种位置嵌入方法仅限于“固定输入大小”的问题,并且需要大量的额外内存来存储位置嵌入参数。本文提出了一种将位置信息整合到注意机制中的新方法——位置掩码注意。具体而言,与现有的位置嵌入方法不同,提出了一种位置距离掩码,将相对位置编码为一种先验知识。为了验证所提出方法的通用性和有效性,我们在两个通用的视频理解任务,即视频对象检测和视频实例分割上评估了我们的位置掩码注意力。实验结果表明,该方法通过对位置信息的聚合,可以显著提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信