Solar Power Output Forecasting Using Artificial Neural Network

Abdelkader El Kounni, H. Radoine, Hicham Mastouri, H. Bahi, A. Outzourhit
{"title":"Solar Power Output Forecasting Using Artificial Neural Network","authors":"Abdelkader El Kounni, H. Radoine, Hicham Mastouri, H. Bahi, A. Outzourhit","doi":"10.1109/IRSEC53969.2021.9741130","DOIUrl":null,"url":null,"abstract":"The solar power generated by photovoltaic modules depends on many parameters namely the solar radiation and the cell temperature as these variables affect the current and voltage provided by the modules. In addition, cable loses, conversion losses and cloud coverage can also affect the power output. In this work, we propose to build a deep learning model that will implicitly take all these parameters into account and provide us with a prediction of the output power generated by PV power plants installed. The Artificial Neural Network used takes as an input the solar radiation, ambient temperature and modules’ temperature, and as target the solar power. The ANN model was trained in a first experiment to give an hourly prediction. The second one provides an entire day forecast. The obtained results are very promising and the predicted output power profile is in good agreement with the measured one.","PeriodicalId":361856,"journal":{"name":"2021 9th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC53969.2021.9741130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The solar power generated by photovoltaic modules depends on many parameters namely the solar radiation and the cell temperature as these variables affect the current and voltage provided by the modules. In addition, cable loses, conversion losses and cloud coverage can also affect the power output. In this work, we propose to build a deep learning model that will implicitly take all these parameters into account and provide us with a prediction of the output power generated by PV power plants installed. The Artificial Neural Network used takes as an input the solar radiation, ambient temperature and modules’ temperature, and as target the solar power. The ANN model was trained in a first experiment to give an hourly prediction. The second one provides an entire day forecast. The obtained results are very promising and the predicted output power profile is in good agreement with the measured one.
基于人工神经网络的太阳能发电量预测
光伏组件产生的太阳能取决于许多参数,即太阳辐射和电池温度,因为这些变量影响组件提供的电流和电压。此外,电缆损耗、转换损耗和云覆盖也会影响功率输出。在这项工作中,我们建议建立一个深度学习模型,该模型将隐式地考虑所有这些参数,并为我们提供安装的光伏发电厂产生的输出功率的预测。所采用的人工神经网络以太阳辐射、环境温度和组件温度为输入,以太阳能功率为目标。人工神经网络模型在第一次实验中进行了训练,以提供每小时的预测。第二个提供全天的天气预报。所得结果令人满意,预测的输出功率分布与实测结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信