AI-Based Models for Software Effort Estimation

Ekrem Kocaguneli, Ayse Tosun Misirli, A. Bener
{"title":"AI-Based Models for Software Effort Estimation","authors":"Ekrem Kocaguneli, Ayse Tosun Misirli, A. Bener","doi":"10.1109/SEAA.2010.19","DOIUrl":null,"url":null,"abstract":"Decision making under uncertainty is a critical problem in the field of software engineering. Predicting the software quality or the cost/ effort requires high level expertise. AI based predictor models, on the other hand, are useful decision making tools that learn from past projects' data. In this study, we have built an effort estimation model for a multinational bank to predict the effort prior to projects' development lifecycle. We have collected process, product and resource metrics from past projects together with the effort values distributed among software life cycle phases, i.e. analysis & test, design & development. We have used Clustering approach to form consistent project groups and Support Vector Regression (SVR) to predict the effort. Our results validate the benefits of using AI methods in real life problems. We attain Pred(25) values as high as 78% in predicting future projects.","PeriodicalId":112012,"journal":{"name":"2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2010.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Decision making under uncertainty is a critical problem in the field of software engineering. Predicting the software quality or the cost/ effort requires high level expertise. AI based predictor models, on the other hand, are useful decision making tools that learn from past projects' data. In this study, we have built an effort estimation model for a multinational bank to predict the effort prior to projects' development lifecycle. We have collected process, product and resource metrics from past projects together with the effort values distributed among software life cycle phases, i.e. analysis & test, design & development. We have used Clustering approach to form consistent project groups and Support Vector Regression (SVR) to predict the effort. Our results validate the benefits of using AI methods in real life problems. We attain Pred(25) values as high as 78% in predicting future projects.
基于人工智能的软件工作量估算模型
不确定条件下的决策是软件工程领域的一个关键问题。预测软件质量或成本/工作量需要高水平的专业知识。另一方面,基于人工智能的预测模型是有用的决策工具,可以从过去的项目数据中学习。在这项研究中,我们为一家跨国银行建立了一个工作量估计模型,以预测项目开发生命周期之前的工作量。我们从过去的项目中收集了过程、产品和资源度量,以及分布在软件生命周期阶段(即分析和测试、设计和开发)中的工作值。我们使用聚类方法来形成一致的项目组,并使用支持向量回归(SVR)来预测工作量。我们的结果验证了在现实生活问题中使用人工智能方法的好处。我们在预测未来项目时获得了高达78%的Pred(25)值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信