{"title":"Discriminating Quantum States with Quantum Machine Learning","authors":"David Quiroga, Prasanna Date, R. Pooser","doi":"10.1109/ICRC53822.2021.00018","DOIUrl":null,"url":null,"abstract":"Quantum machine learning (QML) algorithms have obtained great relevance in the machine learning (ML) field due to the promise of quantum speedups when performing basic linear algebra subroutines (BLAS), a fundamental element in most ML algorithms. By making use of BLAS operations, we propose, implement and analyze a quantum k-means (qk-means) algorithm with a low time complexity of $\\mathcal{O}(NK log(D)I/C)$ to apply it to the fundamental problem of discriminating quantum states at readout. Discriminating quantum states allows the identification of quantum states $\\vert 0\\rangle$ and $\\vert 1\\rangle$ from low-level in-phase and quadrature signal (IQ) data, and can be done using custom ML models. In order to reduce dependency on a classical computer, we use the qk-means to perform state discrimination on the IBMQ Bogota device and managed to find assignment fidelities of up to 98.7% that were only marginally lower than that of the k-means algorithm. We also performed a cross-talk benchmark on the quantum device by applying both algorithms to perform state discrimination on a combination of quantum states and using Pearson Correlation coefficients and assignment fidelities of discrimination results to conclude on the presence of cross-talk on qubits. Evidence shows cross-talk in the (1, 2) and (2, 3) neighboring qubit couples for the analyzed device.","PeriodicalId":139766,"journal":{"name":"2021 International Conference on Rebooting Computing (ICRC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC53822.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Quantum machine learning (QML) algorithms have obtained great relevance in the machine learning (ML) field due to the promise of quantum speedups when performing basic linear algebra subroutines (BLAS), a fundamental element in most ML algorithms. By making use of BLAS operations, we propose, implement and analyze a quantum k-means (qk-means) algorithm with a low time complexity of $\mathcal{O}(NK log(D)I/C)$ to apply it to the fundamental problem of discriminating quantum states at readout. Discriminating quantum states allows the identification of quantum states $\vert 0\rangle$ and $\vert 1\rangle$ from low-level in-phase and quadrature signal (IQ) data, and can be done using custom ML models. In order to reduce dependency on a classical computer, we use the qk-means to perform state discrimination on the IBMQ Bogota device and managed to find assignment fidelities of up to 98.7% that were only marginally lower than that of the k-means algorithm. We also performed a cross-talk benchmark on the quantum device by applying both algorithms to perform state discrimination on a combination of quantum states and using Pearson Correlation coefficients and assignment fidelities of discrimination results to conclude on the presence of cross-talk on qubits. Evidence shows cross-talk in the (1, 2) and (2, 3) neighboring qubit couples for the analyzed device.