Intelligent vehicle for search, rescue and transportation purposes

Abdulla Al-Kaff, Francisco Miguel Moreno, A. D. L. Escalera, Jose M. Armingol
{"title":"Intelligent vehicle for search, rescue and transportation purposes","authors":"Abdulla Al-Kaff, Francisco Miguel Moreno, A. D. L. Escalera, Jose M. Armingol","doi":"10.1109/SSRR.2017.8088148","DOIUrl":null,"url":null,"abstract":"Recent development in micro-electronics technologies as well as the computer vision techniques increased demand to use Unmanned Aerial Vehicles (UAVs) in several industrial and civil applications. This paper proposed a vision based system, that is used in UAVs for search, rescue and transportation purposes. The proposed system is divided into two main parts: Vision-based object detection and classification, in which, a Kinect V2 sensor is used; to extract the objects from the ground plane, and estimate the distance to the UAV. In addition, Support Vector Machine (SVM) human detector based on Histograms of Oriented Gradients (HOG) features is applied to classify the human bodies from the all detected objects. Secondly, a semi-autonomous reactive control for visual servoing system is implemented; to control the position and the velocity of the UAV for performing safe approaching maneuvers to the detected objects. The proposed system has been validated by performing several real flights, and the obtained results show the high robustness and accuracy of the system.","PeriodicalId":403881,"journal":{"name":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2017.8088148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Recent development in micro-electronics technologies as well as the computer vision techniques increased demand to use Unmanned Aerial Vehicles (UAVs) in several industrial and civil applications. This paper proposed a vision based system, that is used in UAVs for search, rescue and transportation purposes. The proposed system is divided into two main parts: Vision-based object detection and classification, in which, a Kinect V2 sensor is used; to extract the objects from the ground plane, and estimate the distance to the UAV. In addition, Support Vector Machine (SVM) human detector based on Histograms of Oriented Gradients (HOG) features is applied to classify the human bodies from the all detected objects. Secondly, a semi-autonomous reactive control for visual servoing system is implemented; to control the position and the velocity of the UAV for performing safe approaching maneuvers to the detected objects. The proposed system has been validated by performing several real flights, and the obtained results show the high robustness and accuracy of the system.
用于搜索、救援和运输的智能车辆
微电子技术以及计算机视觉技术的最新发展增加了在几个工业和民用应用中使用无人驾驶飞行器(uav)的需求。本文提出了一种用于无人机搜索、救援和运输的基于视觉的系统。该系统主要分为两个部分:基于视觉的物体检测与分类,其中使用Kinect V2传感器;从地平面提取目标,并估计到无人机的距离。此外,采用基于HOG特征的支持向量机(SVM)人体检测器,从所有检测对象中对人体进行分类。其次,实现了视觉伺服系统的半自主响应控制;控制UAV的位置和速度以执行安全接近被探测物体的机动。仿真结果表明,该系统具有较高的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信