Usage of the HMM-Based Speech Synthesis for Intelligent Arabic Voice

Tamer S. Fares, A. Khalil, A. Hegazy
{"title":"Usage of the HMM-Based Speech Synthesis for Intelligent Arabic Voice","authors":"Tamer S. Fares, A. Khalil, A. Hegazy","doi":"10.1063/1.2953060","DOIUrl":null,"url":null,"abstract":"The HMM as a suitable model for time sequence modeling is used for estimation of speech synthesis parameters, A speech parameter sequence is generated from HMMs themselves whose observation vectors consists of spectral parameter vector and its dynamic feature vectors. HMMs generate cepstral coefficients and pitch parameter which are then fed to speech synthesis filter named Mel Log Spectral Approximation (MLSA), this paper explains how this approach can be applied to the Arabic language to produce intelligent Arabic speech synthesis using the HMM‐Based Speech Synthesis and the influence of using of the dynamic features and the increasing of the number of mixture components on the quality enhancement of the Arabic speech synthesized.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2953060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The HMM as a suitable model for time sequence modeling is used for estimation of speech synthesis parameters, A speech parameter sequence is generated from HMMs themselves whose observation vectors consists of spectral parameter vector and its dynamic feature vectors. HMMs generate cepstral coefficients and pitch parameter which are then fed to speech synthesis filter named Mel Log Spectral Approximation (MLSA), this paper explains how this approach can be applied to the Arabic language to produce intelligent Arabic speech synthesis using the HMM‐Based Speech Synthesis and the influence of using of the dynamic features and the increasing of the number of mixture components on the quality enhancement of the Arabic speech synthesized.
基于hmm的语音合成在智能阿拉伯语音中的应用
HMM是一种适合时间序列建模的模型,用于语音合成参数的估计,HMM本身生成语音参数序列,其观测向量由频谱参数向量及其动态特征向量组成。HMM生成倒谱系数和基音参数,然后将其馈送到名为Mel Log spectrum Approximation (MLSA)的语音合成滤波器中,本文解释了如何将这种方法应用于阿拉伯语,使用基于HMM的语音合成来生成智能阿拉伯语语音合成,以及动态特征的使用和混合成分数量的增加对合成的阿拉伯语语音质量增强的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信