Active Learning for One-Class Classification

Vincent Barnabe-Lortie, C. Bellinger, N. Japkowicz
{"title":"Active Learning for One-Class Classification","authors":"Vincent Barnabe-Lortie, C. Bellinger, N. Japkowicz","doi":"10.1109/ICMLA.2015.167","DOIUrl":null,"url":null,"abstract":"Active learning is a common solution for reducing labeling costs and maximizing the impact of human labeling efforts in binary and multi-class classification settings. However, when we are faced with extreme levels of class imbalance, a situation in which it is not safe to assume that we have a representative sample of the minority class, it has been shown effective to replace the binary classifiers with a one-class classifiers. In such a setting, traditional active learning methods, and many previously proposed in the literature for one-class classifiers, prove to be inappropriate, as they rely on assumptions about the data that no longer stand. In this paper, we propose a novel approach to active learning designed for one-class classification. The proposed method does not rely on many of the inappropriate assumptions of its predecessors and leads to more robust classification performance. The gist of this method consists of labeling, in priority, the instances considered to fit the learned class the least by previous iterations of a one-class classification model. We provide empirical evidence for the merits of the proposed method compared to the available alternatives, and discuss how the method may have an impact in an applied setting.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Active learning is a common solution for reducing labeling costs and maximizing the impact of human labeling efforts in binary and multi-class classification settings. However, when we are faced with extreme levels of class imbalance, a situation in which it is not safe to assume that we have a representative sample of the minority class, it has been shown effective to replace the binary classifiers with a one-class classifiers. In such a setting, traditional active learning methods, and many previously proposed in the literature for one-class classifiers, prove to be inappropriate, as they rely on assumptions about the data that no longer stand. In this paper, we propose a novel approach to active learning designed for one-class classification. The proposed method does not rely on many of the inappropriate assumptions of its predecessors and leads to more robust classification performance. The gist of this method consists of labeling, in priority, the instances considered to fit the learned class the least by previous iterations of a one-class classification model. We provide empirical evidence for the merits of the proposed method compared to the available alternatives, and discuss how the method may have an impact in an applied setting.
一类分类的主动学习
主动学习是在二分类和多分类设置中降低标注成本和最大化人类标注工作影响的常见解决方案。然而,当我们面临极端的类不平衡时,在这种情况下,假设我们有少数类的代表性样本是不安全的,用单类分类器代替二元分类器是有效的。在这种情况下,传统的主动学习方法,以及以前在文献中针对单类分类器提出的许多方法,被证明是不合适的,因为它们依赖于对数据的假设,这些假设不再成立。本文提出了一种针对单类分类的主动学习方法。该方法不依赖于前人的许多不适当的假设,具有更强的分类性能。该方法的要点包括优先标记被单类分类模型的先前迭代认为最适合学习类的实例。我们提供了经验证据,与现有的替代方案相比,所提出的方法的优点,并讨论了该方法如何在应用环境中产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信