Do-it-yourself LocalWireless Networks: A Multidimensional Network Analysis of Mobile Node Social Aspects

Annalisa Socievole, S. Marano
{"title":"Do-it-yourself LocalWireless Networks: A Multidimensional Network Analysis of Mobile Node Social Aspects","authors":"Annalisa Socievole, S. Marano","doi":"10.5220/0005963400270035","DOIUrl":null,"url":null,"abstract":"The emerging paradigm of Do-it-yourself (DIY) networking is increasingly taking the attention of research \n \ncommunity on DTNs, opportunistic networks and social networks since it allows the creation of local humandriven \n \nwireless networks outside the public Internet. Even when Internet is available, DIY networks may form \n \nan interesting alternative option for communication encouraging face-to-face interactions and more ambitious \n \nobjectives such as e-participation and e-democracy. The aim of this paper is to analyze a set of mobility \n \ntraces describing both local wireless interactions and online friendships in different networking environments \n \nin order to explore a fundamental aspect of these social-driven networks: node centrality. Since node centrality \n \nplays an important role in message forwarding, we propose a multi-layer network approach to the analysis of \n \nonline and offline node centrality in DIY networks. Analyzing egocentric and sociocentric node centrality on \n \nthe social network detected through wireless encounters and on the corresponding Facebook social network \n \nfor 6 different real-world traces, we show that online and offline degree centralities are significantly correlated \n \non most datasets. On the contrary, betweenness, closeness and eigenvector centralities show medium-low \n \ncorrelation values.","PeriodicalId":172337,"journal":{"name":"International Conference on Data Communication Networking","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Data Communication Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005963400270035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging paradigm of Do-it-yourself (DIY) networking is increasingly taking the attention of research community on DTNs, opportunistic networks and social networks since it allows the creation of local humandriven wireless networks outside the public Internet. Even when Internet is available, DIY networks may form an interesting alternative option for communication encouraging face-to-face interactions and more ambitious objectives such as e-participation and e-democracy. The aim of this paper is to analyze a set of mobility traces describing both local wireless interactions and online friendships in different networking environments in order to explore a fundamental aspect of these social-driven networks: node centrality. Since node centrality plays an important role in message forwarding, we propose a multi-layer network approach to the analysis of online and offline node centrality in DIY networks. Analyzing egocentric and sociocentric node centrality on the social network detected through wireless encounters and on the corresponding Facebook social network for 6 different real-world traces, we show that online and offline degree centralities are significantly correlated on most datasets. On the contrary, betweenness, closeness and eigenvector centralities show medium-low correlation values.
diy本地无线网络:移动节点社交方面的多维网络分析
新兴的DIY网络模式正日益引起DTNs、机会主义网络和社交网络研究团体的关注,因为它允许在公共互联网之外创建本地人工驱动的无线网络。即使在有互联网的情况下,DIY网络也可能形成一种有趣的交流选择,鼓励面对面的互动和更雄心勃勃的目标,如电子参与和电子民主。本文的目的是分析一组描述不同网络环境中本地无线交互和在线友谊的移动轨迹,以探索这些社交驱动网络的一个基本方面:节点中心性。由于节点中心性在消息转发中起着重要作用,我们提出了一种多层网络方法来分析DIY网络中的在线和离线节点中心性。通过分析通过无线接触检测到的社交网络和相应的Facebook社交网络上的6种不同现实世界轨迹的自我中心和社会中心节点中心性,我们发现在线和离线度中心性在大多数数据集上显着相关。相反,中间度、接近度和特征向量中心性呈现中低相关值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信