Learning primitive and scene semantics of images for classification and retrieval

Cheong Yiu Fung, K. Loe
{"title":"Learning primitive and scene semantics of images for classification and retrieval","authors":"Cheong Yiu Fung, K. Loe","doi":"10.1145/319878.319881","DOIUrl":null,"url":null,"abstract":"We present a learning-based semantics approach for classifying and retrieving images. Our approach defines semantics at two levels: (1) primitive semantics at the patch level, extracted automatically from pixel characteristics of patches with supervised learning; and (2) scene semantics at the image level, recognized from the association of primitive semantics of the patches in a self-organizing manner. Images are classified and retrieved according to the similarity in scene semantics. Our experiments so far have yielded highly accurate scene classification results and very promising retrieval performance on a set of diverse natural scene images.","PeriodicalId":265329,"journal":{"name":"MULTIMEDIA '99","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/319878.319881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present a learning-based semantics approach for classifying and retrieving images. Our approach defines semantics at two levels: (1) primitive semantics at the patch level, extracted automatically from pixel characteristics of patches with supervised learning; and (2) scene semantics at the image level, recognized from the association of primitive semantics of the patches in a self-organizing manner. Images are classified and retrieved according to the similarity in scene semantics. Our experiments so far have yielded highly accurate scene classification results and very promising retrieval performance on a set of diverse natural scene images.
学习图像的原语和场景语义,用于分类和检索
我们提出了一种基于学习的图像分类和检索语义方法。我们的方法在两个层面上定义语义:(1)在补丁层面上的原始语义,通过监督学习从补丁的像素特征中自动提取;(2)图像级的场景语义,从原语语义的关联中以自组织的方式进行识别。根据场景语义中的相似度对图像进行分类和检索。目前,我们的实验已经在一组不同的自然场景图像上获得了非常准确的场景分类结果和非常有前景的检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信