Towards effective improvement of the Bayesian Belief Network Structure learning

Yan Tang, K. Cooper, João W. Cangussu, Kun Tian, Yin Wu
{"title":"Towards effective improvement of the Bayesian Belief Network Structure learning","authors":"Yan Tang, K. Cooper, João W. Cangussu, Kun Tian, Yin Wu","doi":"10.1109/ISI.2010.5484745","DOIUrl":null,"url":null,"abstract":"Summary form only given.The Bayesian Belief Network (BBN) is a very powerful tool for causal relationship modeling and probabilistic reasoning. A BBN has two components. First is its structure a directed acyclic graph (DAG) whose nodes represent random variables and whose arcs represent the dependencies between the variables. The second component is its parameter in the form of Conditional Probability Tables (CPTs).The BBN is widely used in many different areas, excelling itself in Prediction, Risk Analysis, Diagnosis and Decision Support.","PeriodicalId":434501,"journal":{"name":"2010 IEEE International Conference on Intelligence and Security Informatics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2010.5484745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Summary form only given.The Bayesian Belief Network (BBN) is a very powerful tool for causal relationship modeling and probabilistic reasoning. A BBN has two components. First is its structure a directed acyclic graph (DAG) whose nodes represent random variables and whose arcs represent the dependencies between the variables. The second component is its parameter in the form of Conditional Probability Tables (CPTs).The BBN is widely used in many different areas, excelling itself in Prediction, Risk Analysis, Diagnosis and Decision Support.
对贝叶斯信念网络结构学习的有效改进
只提供摘要形式。贝叶斯信念网络(BBN)是一种非常强大的因果关系建模和概率推理工具。BBN有两个组成部分。首先是它的结构,一个有向无环图(DAG),其节点表示随机变量,其弧表示变量之间的依赖关系。第二个组件是条件概率表(cpt)形式的参数。BBN被广泛应用于许多不同的领域,在预测、风险分析、诊断和决策支持方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信