Y. Yuan, Ke Ji, R. Sun, Kun Ma, Zhenxiang Chen, Lin Wang
{"title":"An Abnormal Phone Identification Model with Meta-learning Two-layer Framework Based on PCA Dimension Reduction","authors":"Y. Yuan, Ke Ji, R. Sun, Kun Ma, Zhenxiang Chen, Lin Wang","doi":"10.1145/3318299.3318350","DOIUrl":null,"url":null,"abstract":"In the telecommunications industry, it is a critical and challenging problem that identify fraudulent calls in time. In the traditional abnormal phone identification method, there are generally cases where the initiative is weak and the recognition accuracy is low. In order to solve the problem of data sample imbalance and dirty data in the sample set, we use ensemble algorithms to improve the recognition accuracy of abnormal phones. Specially, we design a meta-learning two-layer framework (MTF) algorithm by integrating heterogeneous learners based on PCA dimension reduction. The experiment demonstrates that the MTF model has a great improvement in the abnormal phone identification compared with traditional classification method.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"55 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the telecommunications industry, it is a critical and challenging problem that identify fraudulent calls in time. In the traditional abnormal phone identification method, there are generally cases where the initiative is weak and the recognition accuracy is low. In order to solve the problem of data sample imbalance and dirty data in the sample set, we use ensemble algorithms to improve the recognition accuracy of abnormal phones. Specially, we design a meta-learning two-layer framework (MTF) algorithm by integrating heterogeneous learners based on PCA dimension reduction. The experiment demonstrates that the MTF model has a great improvement in the abnormal phone identification compared with traditional classification method.