Investigations on Machine Learning Models for Mental Health Analysis and Prediction

Ajith Sankar R, S. Juliet
{"title":"Investigations on Machine Learning Models for Mental Health Analysis and Prediction","authors":"Ajith Sankar R, S. Juliet","doi":"10.1109/ICEEICT56924.2023.10157385","DOIUrl":null,"url":null,"abstract":"Machine learning Techniques are identified as the most suitable methods for mental health analysis and prediction. Mental illness among people has increased vastly around the world and has become a serious human problem to be solved. From much research work and research articles, it is evident that machine learning algorithms can be an effective approach to finding mental illness. In this paper, different machine learning algorithms are investigated to find the best model, suitable to predict the mental health of a person more accurately and at a faster rate. In order to create a system that operates effectively and quickly, this paper investigates the performance of various machine learning models, including KNN, Support Vector Machine, Random Forest, Logistic regression, Decision tree, etc. All the models are compared based on the accuracy that each method offers after successful execution.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning Techniques are identified as the most suitable methods for mental health analysis and prediction. Mental illness among people has increased vastly around the world and has become a serious human problem to be solved. From much research work and research articles, it is evident that machine learning algorithms can be an effective approach to finding mental illness. In this paper, different machine learning algorithms are investigated to find the best model, suitable to predict the mental health of a person more accurately and at a faster rate. In order to create a system that operates effectively and quickly, this paper investigates the performance of various machine learning models, including KNN, Support Vector Machine, Random Forest, Logistic regression, Decision tree, etc. All the models are compared based on the accuracy that each method offers after successful execution.
心理健康分析与预测的机器学习模型研究
机器学习技术被认为是最适合心理健康分析和预测的方法。精神疾病在世界范围内急剧增加,已成为一个亟待解决的严重的人类问题。从许多研究工作和研究文章中可以明显看出,机器学习算法可以成为发现精神疾病的有效方法。本文研究了不同的机器学习算法,以找到适合更准确、更快地预测人的心理健康状况的最佳模型。为了创建一个有效和快速运行的系统,本文研究了各种机器学习模型的性能,包括KNN,支持向量机,随机森林,逻辑回归,决策树等。在成功执行后,根据每种方法提供的精度对所有模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信