A multiple-kernel based subspace clustering method

Yifang Yang, Fei Li
{"title":"A multiple-kernel based subspace clustering method","authors":"Yifang Yang, Fei Li","doi":"10.1117/12.2661171","DOIUrl":null,"url":null,"abstract":"Spectral clustering has been successfully used in the domain of pattern recognition and computer vision. Kernel subspace clustering has become a hot research topic because it can reveal the nonlinear structure. However, the performance of exiting single kernel subspace clustering relys heavily on the choice of kernel function. To address the problem, we propose a novel method called multiple-kernel based subspace clustering method (MKSC) by combining kernel block diagonal representation with multiple kernel learning. The proposed MKSC algorithm firstly obtains the optimal kernel matrix by using multiple kernel clustering method, then replace the kernel function in single kernel subspace clustering model with the optimized kernel matrix, finally the clustering result is got by optimizing the MKSC model. Experimental results on three datasets testify the effectiveness of our proposed MKSC method.","PeriodicalId":220312,"journal":{"name":"International Symposium on Computer Engineering and Intelligent Communications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Computer Engineering and Intelligent Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2661171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral clustering has been successfully used in the domain of pattern recognition and computer vision. Kernel subspace clustering has become a hot research topic because it can reveal the nonlinear structure. However, the performance of exiting single kernel subspace clustering relys heavily on the choice of kernel function. To address the problem, we propose a novel method called multiple-kernel based subspace clustering method (MKSC) by combining kernel block diagonal representation with multiple kernel learning. The proposed MKSC algorithm firstly obtains the optimal kernel matrix by using multiple kernel clustering method, then replace the kernel function in single kernel subspace clustering model with the optimized kernel matrix, finally the clustering result is got by optimizing the MKSC model. Experimental results on three datasets testify the effectiveness of our proposed MKSC method.
基于多核的子空间聚类方法
光谱聚类已成功地应用于模式识别和计算机视觉领域。核子空间聚类由于能够揭示非线性结构而成为一个研究热点。然而,现有的单核子空间聚类算法的性能很大程度上依赖于核函数的选择。为了解决这一问题,我们将核块对角表示与多核学习相结合,提出了一种基于多核的子空间聚类方法。提出的MKSC算法首先采用多核聚类方法获得最优核矩阵,然后用优化后的核矩阵替换单核子空间聚类模型中的核函数,最后通过对MKSC模型进行优化得到聚类结果。在三个数据集上的实验结果证明了MKSC方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信