Eugenio Cesario, Francesco Folino, G. Manco, L. Pontieri
{"title":"An incremental clustering scheme for duplicate detection in large databases","authors":"Eugenio Cesario, Francesco Folino, G. Manco, L. Pontieri","doi":"10.1109/IDEAS.2005.10","DOIUrl":null,"url":null,"abstract":"We propose an incremental algorithm for clustering duplicate tuples in large databases, which allows to assign any new tuple t to the cluster containing the database tuples which are most similar to t (and hence are likely to refer to the same real-world entity t is associated with). The core of the approach is a hash-based indexing technique that tends to assign highly similar objects to the same buckets. Empirical evaluation proves that the proposed method allows to gain considerable efficiency improvement over a state-of-art index structure for proximity searches in metric spaces.","PeriodicalId":357591,"journal":{"name":"9th International Database Engineering & Application Symposium (IDEAS'05)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Database Engineering & Application Symposium (IDEAS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDEAS.2005.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We propose an incremental algorithm for clustering duplicate tuples in large databases, which allows to assign any new tuple t to the cluster containing the database tuples which are most similar to t (and hence are likely to refer to the same real-world entity t is associated with). The core of the approach is a hash-based indexing technique that tends to assign highly similar objects to the same buckets. Empirical evaluation proves that the proposed method allows to gain considerable efficiency improvement over a state-of-art index structure for proximity searches in metric spaces.