A Data-Trained, Affine-Linear Intra-Picture Prediction in the Frequency Domain

Michael Schäfer, Björn Stallenberger, Jonathan Pfaff, Philipp Helle, H. Schwarz, D. Marpe, T. Wiegand
{"title":"A Data-Trained, Affine-Linear Intra-Picture Prediction in the Frequency Domain","authors":"Michael Schäfer, Björn Stallenberger, Jonathan Pfaff, Philipp Helle, H. Schwarz, D. Marpe, T. Wiegand","doi":"10.1109/PCS48520.2019.8954559","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven training of affine- linear predictors which perform intra-picture prediction for video coding. The trained predictors use a single line of reconstructed boundary samples as input like the conventional intra prediction modes. For large blocks, the presented predictors initially transform the input samples via Discrete Cosine Transform. This allows to omit high frequency coefficients and consequently reduce the input dimension. The output is the result of a single matrix-vector multiplication and offset addition. Here, the predictors only construct certain coefficients in the frequency domain. The final prediction signal is then obtained by inverse transform. The coefficients of the prediction modes need to be stored in advance, requiring 0.273 MB of memory. The training employs a recursive block partitioning, where the loss function targets to approximate the bit-rate of the DCT-transformed block residuals. The obtained predictors are incorporated into the Versatile Video Coding Test Model 4. The authors report All- Intra bit-rate savings ranging from 0.7% to 2.0% across different resolutions in terms of the Bjøntegaard-Delta bit rate (BD-rate).","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a data-driven training of affine- linear predictors which perform intra-picture prediction for video coding. The trained predictors use a single line of reconstructed boundary samples as input like the conventional intra prediction modes. For large blocks, the presented predictors initially transform the input samples via Discrete Cosine Transform. This allows to omit high frequency coefficients and consequently reduce the input dimension. The output is the result of a single matrix-vector multiplication and offset addition. Here, the predictors only construct certain coefficients in the frequency domain. The final prediction signal is then obtained by inverse transform. The coefficients of the prediction modes need to be stored in advance, requiring 0.273 MB of memory. The training employs a recursive block partitioning, where the loss function targets to approximate the bit-rate of the DCT-transformed block residuals. The obtained predictors are incorporated into the Versatile Video Coding Test Model 4. The authors report All- Intra bit-rate savings ranging from 0.7% to 2.0% across different resolutions in terms of the Bjøntegaard-Delta bit rate (BD-rate).
频域数据训练的仿射线性图像内预测
本文提出了一种数据驱动的仿射线性预测器训练方法,用于视频编码的图像内预测。训练后的预测器使用单线重构边界样本作为输入,就像传统的内部预测模式一样。对于较大的块,所提出的预测器最初通过离散余弦变换变换输入样本。这允许省略高频系数,从而降低输入维数。输出是单个矩阵向量乘法和偏移量加法的结果。在这里,预测器只在频域中构造某些系数。然后通过逆变换得到最终的预测信号。预测模式的系数需要提前存储,需要0.273 MB的内存。训练采用递归块划分,其中损失函数的目标是近似dct变换后的块残差的比特率。得到的预测因子被纳入多功能视频编码测试模型4。作者报告说,在不同分辨率下,就Bjøntegaard-Delta比特率(BD-rate)而言,All- Intra比特率可节省0.7%至2.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信