Mobile interactive region-of-interest video streaming with crowd-driven prefetching

IMMPD '11 Pub Date : 2011-11-29 DOI:10.1145/2072561.2072564
Derek Pang, Sherif A. Halawa, Ngai-Man Cheung, B. Girod
{"title":"Mobile interactive region-of-interest video streaming with crowd-driven prefetching","authors":"Derek Pang, Sherif A. Halawa, Ngai-Man Cheung, B. Girod","doi":"10.1145/2072561.2072564","DOIUrl":null,"url":null,"abstract":"Small screen sizes, limited bandwidth, and low computational power often prohibit streaming of high-resolution videos to mobile devices over a wireless network. Recent advances in interactive region-of-interest (IRoI) video streaming technology allow users to interactively control pan/tilt/zoom, while providing bit-rate and complexity savings. In this paper, we present a mobile IRoI video streaming system that delivers high-quality interactive video to smartphones and tablets with multi-touch screens. One of the challenges in IRoI video streaming is to enable low-latency interaction when a user switches between different RoIs. We propose a crowd-driven RoI prediction scheme to prefetch future selected regions. Different from previous approaches that extrapolate past user inputs or perform video semantic analysis, our proposed scheme exploits user viewing statistics collected at the server to make RoI predictions. Our experiments show that a crowd-driven prefetching scheme can substantially reduce average RoI switching delays compared to a system without prefetching.","PeriodicalId":185203,"journal":{"name":"IMMPD '11","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMMPD '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072561.2072564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Small screen sizes, limited bandwidth, and low computational power often prohibit streaming of high-resolution videos to mobile devices over a wireless network. Recent advances in interactive region-of-interest (IRoI) video streaming technology allow users to interactively control pan/tilt/zoom, while providing bit-rate and complexity savings. In this paper, we present a mobile IRoI video streaming system that delivers high-quality interactive video to smartphones and tablets with multi-touch screens. One of the challenges in IRoI video streaming is to enable low-latency interaction when a user switches between different RoIs. We propose a crowd-driven RoI prediction scheme to prefetch future selected regions. Different from previous approaches that extrapolate past user inputs or perform video semantic analysis, our proposed scheme exploits user viewing statistics collected at the server to make RoI predictions. Our experiments show that a crowd-driven prefetching scheme can substantially reduce average RoI switching delays compared to a system without prefetching.
具有人群驱动预取的移动交互式兴趣区域视频流
小屏幕尺寸、有限的带宽和较低的计算能力通常会阻碍通过无线网络向移动设备传输高分辨率视频。交互式感兴趣区域(IRoI)视频流技术的最新进展允许用户交互式地控制平移/倾斜/缩放,同时提供比特率和复杂性节省。在本文中,我们提出了一种移动IRoI视频流系统,该系统可向具有多点触摸屏的智能手机和平板电脑提供高质量的交互式视频。IRoI视频流的挑战之一是当用户在不同roi之间切换时实现低延迟交互。我们提出了一种群体驱动的RoI预测方案来预取未来选定的区域。与以往推断过去用户输入或执行视频语义分析的方法不同,我们提出的方案利用在服务器上收集的用户观看统计数据来进行RoI预测。我们的实验表明,与没有预取的系统相比,群体驱动的预取方案可以大大降低平均RoI切换延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信