On the total/sub k/-diameter of connection networks

Yefim Dinitz, T. Eilam, S. Moran, S. Zaks
{"title":"On the total/sub k/-diameter of connection networks","authors":"Yefim Dinitz, T. Eilam, S. Moran, S. Zaks","doi":"10.1109/ISTCS.1997.595161","DOIUrl":null,"url":null,"abstract":"We study connection networks in which certain pairs of nodes have to be connected by k edge-disjoint paths, and study bounds for the minimal sum of lengths of such k paths. We define the related notions of total/sub k/-distance for a pair of nodes and total/sub k/-diameter of a connection network, and study the value TD/sub k/(d) which is the maximal such total/sub k/-diameter of a network with diameter d. These notions have applications in fault-tolerant routing problems, in ATM networks, and in compact routing in networks. We prove an upper bound on TD/sub k/(d) and a lower bound on the growth of TD/sub k/(d) as functions of k and d; those bounds are tight, /spl theta/(d/sup k/), when k is fired. Specifically, we prove that TD/sub k/(d)/spl les/2/sup k-1/d/sup k/, with the exceptions TD/sub 2/(1)=3, TD/sub 3/(1)=5, and that for every k, d/sub 0/>0, there exists (a) an integer d/spl ges/d/sub 0/ such that TD/sub k/(d)/spl ges/d/sup k/k/sup k/; and (b) a k-connected simple graph G with diameter d such that d/spl ges/d/sub 0/, and td/sub k/(G)/spl ges/(d-2)/sup k//k/sup k/.","PeriodicalId":367160,"journal":{"name":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1997.595161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study connection networks in which certain pairs of nodes have to be connected by k edge-disjoint paths, and study bounds for the minimal sum of lengths of such k paths. We define the related notions of total/sub k/-distance for a pair of nodes and total/sub k/-diameter of a connection network, and study the value TD/sub k/(d) which is the maximal such total/sub k/-diameter of a network with diameter d. These notions have applications in fault-tolerant routing problems, in ATM networks, and in compact routing in networks. We prove an upper bound on TD/sub k/(d) and a lower bound on the growth of TD/sub k/(d) as functions of k and d; those bounds are tight, /spl theta/(d/sup k/), when k is fired. Specifically, we prove that TD/sub k/(d)/spl les/2/sup k-1/d/sup k/, with the exceptions TD/sub 2/(1)=3, TD/sub 3/(1)=5, and that for every k, d/sub 0/>0, there exists (a) an integer d/spl ges/d/sub 0/ such that TD/sub k/(d)/spl ges/d/sup k/k/sup k/; and (b) a k-connected simple graph G with diameter d such that d/spl ges/d/sub 0/, and td/sub k/(G)/spl ges/(d-2)/sup k//k/sup k/.
关于连接网络的总/分k/-直径
我们研究了某些节点对必须由k条边不相交路径连接的连接网络,并研究了这k条路径长度的最小和的界。我们定义了节点对的总/子k/-距离和连接网络的总/子k/-直径的相关概念,并研究了总/子k/-直径为d的网络的最大TD/子k/(d)值。这些概念在容错路由问题、ATM网络和网络中的紧凑路由中都有应用。我们证明了作为k和d的函数的TD/ k/(d)的上界和TD/ k/(d)的增长的下界;当k被触发时,这些边界很紧,/spl /(d/sup k/)具体地说,我们证明了TD/sub k/(d)/spl les/2/sup k-1/d/sup k/,除了TD/sub 2/(1)=3, TD/sub 3/(1)=5,并且对于每一个k, d/sub 0/>,存在(a)一个整数d/spl ges/d/sub 0/使得TD/sub k/(d)/spl ges/d/sup k/k/sup k/;(b)一个直径为d的k连通简单图G,使得d/spl ges/d/sub 0/和td/sub k/(G)/spl ges/(d-2)/sup k//k/sup k/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信