{"title":"Learn A Compression for Objection Detection - VAE with a Bridge","authors":"Yixin Mei, Fan Li, Li Li, Zhu Li","doi":"10.1109/VCIP53242.2021.9675387","DOIUrl":null,"url":null,"abstract":"Recent advances in sensor technology and wide deployment of visual sensors lead to a new application whereas compression of images are not mainly for pixel recovery for human consumption, instead it is for communication to cloud side machine vision tasks like classification, identification, detection and tracking. This opens up new research dimensions for a learning based compression that directly optimizes loss function in vision tasks, and therefore achieves better compression performance vis-a-vis the pixel recovery and then performing vision tasks computing. In this work, we developed a learning based compression scheme that learns a compact feature representation and appropriate bitstreams for the task of visual object detection. Variational Auto-Encoder (VAE) framework is adopted for learning a compact representation, while a bridge network is trained to drive the detection loss function. Simulation results demonstrate that this approach is achieving a new state-of-the-art in task driven compression efficiency, compared with pixel recovery approaches, including both learning based and handcrafted solutions.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recent advances in sensor technology and wide deployment of visual sensors lead to a new application whereas compression of images are not mainly for pixel recovery for human consumption, instead it is for communication to cloud side machine vision tasks like classification, identification, detection and tracking. This opens up new research dimensions for a learning based compression that directly optimizes loss function in vision tasks, and therefore achieves better compression performance vis-a-vis the pixel recovery and then performing vision tasks computing. In this work, we developed a learning based compression scheme that learns a compact feature representation and appropriate bitstreams for the task of visual object detection. Variational Auto-Encoder (VAE) framework is adopted for learning a compact representation, while a bridge network is trained to drive the detection loss function. Simulation results demonstrate that this approach is achieving a new state-of-the-art in task driven compression efficiency, compared with pixel recovery approaches, including both learning based and handcrafted solutions.