{"title":"Fast Reproducible Floating-Point Summation","authors":"J. Demmel, Hong Diep Nguyen","doi":"10.1109/ARITH.2013.9","DOIUrl":null,"url":null,"abstract":"Reproducibility, i.e. getting the bitwise identical floating point results from multiple runs of the same program, is a property that many users depend on either for debugging or correctness checking in many codes [1]. However, the combination of dynamic scheduling of parallel computing resources, and floating point nonassociativity, make attaining reproducibility a challenge even for simple reduction operations like computing the sum of a vector of numbers in parallel. We propose a technique for floating point summation that is reproducible independent of the order of summation. Our technique uses Rump's algorithm for error-free vector transformation [2], and is much more efficient than using (possibly very) high precision arithmetic. Our algorithm trades off efficiency and accuracy: we reproducibly attain reasonably accurate results (with an absolute error bound c · n2 · macheps · max |vi| for a small constant c) with just 2n + O(1) floating-point operations, and quite accurate results (with an absolute error bound c · n3 · macheps2 · max |vi| with 5n + O(1) floating point operations, both with just two reduction operations. Higher accuracies are also possible by increasing the number of error-free transformations. As long as the same rounding mode is used, results computed by the proposed algorithms are reproducible for any run on any platform.","PeriodicalId":211528,"journal":{"name":"2013 IEEE 21st Symposium on Computer Arithmetic","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
Reproducibility, i.e. getting the bitwise identical floating point results from multiple runs of the same program, is a property that many users depend on either for debugging or correctness checking in many codes [1]. However, the combination of dynamic scheduling of parallel computing resources, and floating point nonassociativity, make attaining reproducibility a challenge even for simple reduction operations like computing the sum of a vector of numbers in parallel. We propose a technique for floating point summation that is reproducible independent of the order of summation. Our technique uses Rump's algorithm for error-free vector transformation [2], and is much more efficient than using (possibly very) high precision arithmetic. Our algorithm trades off efficiency and accuracy: we reproducibly attain reasonably accurate results (with an absolute error bound c · n2 · macheps · max |vi| for a small constant c) with just 2n + O(1) floating-point operations, and quite accurate results (with an absolute error bound c · n3 · macheps2 · max |vi| with 5n + O(1) floating point operations, both with just two reduction operations. Higher accuracies are also possible by increasing the number of error-free transformations. As long as the same rounding mode is used, results computed by the proposed algorithms are reproducible for any run on any platform.