Fast Reproducible Floating-Point Summation

J. Demmel, Hong Diep Nguyen
{"title":"Fast Reproducible Floating-Point Summation","authors":"J. Demmel, Hong Diep Nguyen","doi":"10.1109/ARITH.2013.9","DOIUrl":null,"url":null,"abstract":"Reproducibility, i.e. getting the bitwise identical floating point results from multiple runs of the same program, is a property that many users depend on either for debugging or correctness checking in many codes [1]. However, the combination of dynamic scheduling of parallel computing resources, and floating point nonassociativity, make attaining reproducibility a challenge even for simple reduction operations like computing the sum of a vector of numbers in parallel. We propose a technique for floating point summation that is reproducible independent of the order of summation. Our technique uses Rump's algorithm for error-free vector transformation [2], and is much more efficient than using (possibly very) high precision arithmetic. Our algorithm trades off efficiency and accuracy: we reproducibly attain reasonably accurate results (with an absolute error bound c · n2 · macheps · max |vi| for a small constant c) with just 2n + O(1) floating-point operations, and quite accurate results (with an absolute error bound c · n3 · macheps2 · max |vi| with 5n + O(1) floating point operations, both with just two reduction operations. Higher accuracies are also possible by increasing the number of error-free transformations. As long as the same rounding mode is used, results computed by the proposed algorithms are reproducible for any run on any platform.","PeriodicalId":211528,"journal":{"name":"2013 IEEE 21st Symposium on Computer Arithmetic","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Reproducibility, i.e. getting the bitwise identical floating point results from multiple runs of the same program, is a property that many users depend on either for debugging or correctness checking in many codes [1]. However, the combination of dynamic scheduling of parallel computing resources, and floating point nonassociativity, make attaining reproducibility a challenge even for simple reduction operations like computing the sum of a vector of numbers in parallel. We propose a technique for floating point summation that is reproducible independent of the order of summation. Our technique uses Rump's algorithm for error-free vector transformation [2], and is much more efficient than using (possibly very) high precision arithmetic. Our algorithm trades off efficiency and accuracy: we reproducibly attain reasonably accurate results (with an absolute error bound c · n2 · macheps · max |vi| for a small constant c) with just 2n + O(1) floating-point operations, and quite accurate results (with an absolute error bound c · n3 · macheps2 · max |vi| with 5n + O(1) floating point operations, both with just two reduction operations. Higher accuracies are also possible by increasing the number of error-free transformations. As long as the same rounding mode is used, results computed by the proposed algorithms are reproducible for any run on any platform.
快速可重复浮点求和
可重复性,即从同一程序的多次运行中获得按位相同的浮点结果,是许多用户在许多代码中进行调试或正确性检查所依赖的属性[1]。然而,并行计算资源的动态调度和浮点非结合性使得即使是简单的约简操作(如并行计算数字向量的和)也很难获得再现性。我们提出了一种与求和顺序无关的可重复浮点求和技术。我们的技术使用Rump算法进行无误差向量变换[2],并且比使用(可能非常)高精度的算法要高效得多。我们的算法权衡了效率和精度:只需2n + O(1)个浮点运算,我们就可以重复地获得相当准确的结果(对于小常数c,绝对误差范围为c·n2·macheps·max |vi|),并且只需5n + O(1)个浮点运算,我们就可以获得相当准确的结果(绝对误差范围为c·n3·macheps2·max |vi|),两者都只需要两个约简运算。通过增加无错误转换的数量也可以提高精度。只要使用相同的舍入模式,所提出的算法计算的结果在任何平台上运行都是可重复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信