A Low-Dimension Shrinkage Approach to Choice-Based Conjoint Estimation

Yupeng Chen, R. Iyengar
{"title":"A Low-Dimension Shrinkage Approach to Choice-Based Conjoint Estimation","authors":"Yupeng Chen, R. Iyengar","doi":"10.2139/ssrn.3672517","DOIUrl":null,"url":null,"abstract":"Estimating consumers' heterogeneous preferences using choice-based conjoint (CBC) data poses a considerable modeling challenge, as the amount of information elicited from each consumer is often limited. Given the lack of individual-level information, effective information pooling across consumers becomes critical for accurate CBC estimation. In this paper, we propose an innovative low-dimension shrinkage approach to pooling information and modeling preference heterogeneity, in which we learn a low-dimensional affine subspace approximation of the heterogeneity distribution and shrink the individual-level part-worth estimates toward this affine subspace. Drawing on recent modeling techniques for low-rank matrix recovery, we develop a computationally tractable machine learning model for implementing this low-dimension shrinkage and apply it to CBC estimation. We use an extensive simulation experiment and a field data set to demonstrate the superior performance of our low-dimension shrinkage approach as compared to alternative benchmark models.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3672517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating consumers' heterogeneous preferences using choice-based conjoint (CBC) data poses a considerable modeling challenge, as the amount of information elicited from each consumer is often limited. Given the lack of individual-level information, effective information pooling across consumers becomes critical for accurate CBC estimation. In this paper, we propose an innovative low-dimension shrinkage approach to pooling information and modeling preference heterogeneity, in which we learn a low-dimensional affine subspace approximation of the heterogeneity distribution and shrink the individual-level part-worth estimates toward this affine subspace. Drawing on recent modeling techniques for low-rank matrix recovery, we develop a computationally tractable machine learning model for implementing this low-dimension shrinkage and apply it to CBC estimation. We use an extensive simulation experiment and a field data set to demonstrate the superior performance of our low-dimension shrinkage approach as compared to alternative benchmark models.
基于选择的联合估计的低维收缩方法
使用基于选择的联合(CBC)数据估计消费者的异质偏好带来了相当大的建模挑战,因为从每个消费者那里获得的信息量通常是有限的。由于缺乏个人层面的信息,消费者之间有效的信息汇集对于准确的CBC估计至关重要。在本文中,我们提出了一种创新的低维收缩方法来汇集信息和建模偏好异质性,其中我们学习异质性分布的低维仿射子空间近似,并将个人层面的部分价值估计缩小到该仿射子空间。利用最近的低秩矩阵恢复建模技术,我们开发了一个计算上易于处理的机器学习模型来实现这种低维收缩,并将其应用于CBC估计。我们使用广泛的模拟实验和现场数据集来证明与其他基准模型相比,我们的低维收缩方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信