Stochastic approximation techniques and associated tools for neural network optimization

H. Dedieu, A. Flanagan, J. Eriksson, A. Robert
{"title":"Stochastic approximation techniques and associated tools for neural network optimization","authors":"H. Dedieu, A. Flanagan, J. Eriksson, A. Robert","doi":"10.1109/ISNFS.1996.603816","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the optimization of feedforward and feedback artificial neural networks (ANN) working in supervised learning mode. We describe in a general way how it is possible to derive first and second order stochastic approximation methods that provide learning capabilities. We show how certain variables, the sensitivities of the ANN outputs, play a key role in the ANN optimization process. Then we describe how some useful and elementary tools known in circuit theory can be used to compute these sensitivities with a low computational cost. We show on an example how to apply these two sets of complementary tools, i.e. stochastic approximation and sensitivity theory.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the optimization of feedforward and feedback artificial neural networks (ANN) working in supervised learning mode. We describe in a general way how it is possible to derive first and second order stochastic approximation methods that provide learning capabilities. We show how certain variables, the sensitivities of the ANN outputs, play a key role in the ANN optimization process. Then we describe how some useful and elementary tools known in circuit theory can be used to compute these sensitivities with a low computational cost. We show on an example how to apply these two sets of complementary tools, i.e. stochastic approximation and sensitivity theory.
神经网络优化的随机逼近技术及相关工具
研究了工作在监督学习模式下的前馈和反馈人工神经网络的优化问题。我们以一种一般的方式描述了如何可能推导出提供学习能力的一阶和二阶随机近似方法。我们展示了某些变量,即人工神经网络输出的灵敏度,如何在人工神经网络优化过程中发挥关键作用。然后,我们描述了如何使用电路理论中已知的一些有用的基本工具以较低的计算成本计算这些灵敏度。我们通过一个例子来说明如何应用这两套互补的工具,即随机逼近和灵敏度理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信