SWiF: A Simplified Workload-Centric Framework for FPGA-Based Computing

David Ojika, P. Majcher, Wojciech Neubauer, S. Subhaschandra, D. Acosta
{"title":"SWiF: A Simplified Workload-Centric Framework for FPGA-Based Computing","authors":"David Ojika, P. Majcher, Wojciech Neubauer, S. Subhaschandra, D. Acosta","doi":"10.1109/FCCM.2017.52","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce SWiF – Simplified Workload-intuitive Framework – a workload-centric, application programming framework designed to simplify the large-scale deployment of FPGAs in end-to-end applications. SWiF can intelligently mediate access to shared resources by orchestrating the distribution and scheduling of tasks across a heterogeneous mix of FPGA and CPU resources in order to improve utilization and maintain system requirements. We implemented SWiF atop Intel Accelerator Abstraction Layer (AAL) and deployed the resulting software stack in a datacenter with an Intel-based Xeon+FPGA server running Apache Spark. We demonstrate that by using SWiF's API, developers can flexibly and easily deploy FPGA-enabled applications and frameworks with almost no change to existing software stack. In particular, we demonstrate that by offloading through SWiF the compression workload of Spark unto FPGA, we gain a speedup of 3.2X in total job execution, and up to 5X when Spark's Resilient Distributed Datasets (RDDs) are persisted in memory.","PeriodicalId":124631,"journal":{"name":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce SWiF – Simplified Workload-intuitive Framework – a workload-centric, application programming framework designed to simplify the large-scale deployment of FPGAs in end-to-end applications. SWiF can intelligently mediate access to shared resources by orchestrating the distribution and scheduling of tasks across a heterogeneous mix of FPGA and CPU resources in order to improve utilization and maintain system requirements. We implemented SWiF atop Intel Accelerator Abstraction Layer (AAL) and deployed the resulting software stack in a datacenter with an Intel-based Xeon+FPGA server running Apache Spark. We demonstrate that by using SWiF's API, developers can flexibly and easily deploy FPGA-enabled applications and frameworks with almost no change to existing software stack. In particular, we demonstrate that by offloading through SWiF the compression workload of Spark unto FPGA, we gain a speedup of 3.2X in total job execution, and up to 5X when Spark's Resilient Distributed Datasets (RDDs) are persisted in memory.
SWiF:一个简化的以工作负载为中心的fpga计算框架
在本文中,我们介绍了SWiF -简化工作负载直观框架-一个以工作负载为中心的应用程序编程框架,旨在简化fpga在端到端应用程序中的大规模部署。通过在FPGA和CPU资源的异构混合中编排任务的分配和调度,SWiF可以智能地协调对共享资源的访问,从而提高利用率并维护系统需求。我们在英特尔加速器抽象层(AAL)上实现了SWiF,并将生成的软件堆栈部署在一个数据中心中,该数据中心使用基于英特尔的Xeon+FPGA服务器运行Apache Spark。我们证明,通过使用SWiF的API,开发人员可以灵活、轻松地部署支持fpga的应用程序和框架,而几乎不需要改变现有的软件堆栈。特别是,我们证明了通过SWiF将Spark的压缩工作负载卸载到FPGA,我们在总作业执行中获得了3.2倍的加速,当Spark的弹性分布式数据集(rdd)持久化在内存中时,我们获得了高达5倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信