{"title":"Development of an Intelligent Robotized Machine Vision Automated System for Bacterial Growth Monitoring","authors":"P. Ramanathan, M. Ericsson","doi":"10.1109/IConSCEPT57958.2023.10170642","DOIUrl":null,"url":null,"abstract":"Pathogenic bacterial growth detection and monitoring is an important scientific process in the field of quality control in the food, water, and medical industries. Very-large-scale process of such bacteria growth monitoring is possible only with an automated process. The mechanism must make sure that the sample is continuously monitored, and detected, data is communicated to supervisors and managers, and data is stored historically retrievable for quality control and analysis. A manual bacteria inspection among the Petri dishes incubated of such bacterial growth in food processing was attempted for automation. The manual inspection in a microbiological industry involves; an operator inspecting the input petri discs to check if there are bacteria, writing down the barcode of the corresponding petri dish, and then sorting the Petri discs depending on the bacterial growth. In this automation attempt of automatizing this petri-disc inspection, the project was split into two phases. 1. Building a vision system to detect bacteria, developing of an algorithm to quantify the growth, and registering the barcode in a registry. 2. The second phase is to design a robot system with programming and define the layout of the station. The development of an intelligent robotized machine vision automated system proves the concept of a major industrial practice that has the potential to significantly increase the quality and productivity of bacterial growth, with increased throughput.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic bacterial growth detection and monitoring is an important scientific process in the field of quality control in the food, water, and medical industries. Very-large-scale process of such bacteria growth monitoring is possible only with an automated process. The mechanism must make sure that the sample is continuously monitored, and detected, data is communicated to supervisors and managers, and data is stored historically retrievable for quality control and analysis. A manual bacteria inspection among the Petri dishes incubated of such bacterial growth in food processing was attempted for automation. The manual inspection in a microbiological industry involves; an operator inspecting the input petri discs to check if there are bacteria, writing down the barcode of the corresponding petri dish, and then sorting the Petri discs depending on the bacterial growth. In this automation attempt of automatizing this petri-disc inspection, the project was split into two phases. 1. Building a vision system to detect bacteria, developing of an algorithm to quantify the growth, and registering the barcode in a registry. 2. The second phase is to design a robot system with programming and define the layout of the station. The development of an intelligent robotized machine vision automated system proves the concept of a major industrial practice that has the potential to significantly increase the quality and productivity of bacterial growth, with increased throughput.