Analysis of a human extraction system for deploying gait biometrics

Michael G. Grant, Jamie D. Shutler, M. Nixon, J. Carter
{"title":"Analysis of a human extraction system for deploying gait biometrics","authors":"Michael G. Grant, Jamie D. Shutler, M. Nixon, J. Carter","doi":"10.1109/IAI.2004.1300942","DOIUrl":null,"url":null,"abstract":"There is an increasing need in biometric deployment, especially gait, for extraction in unconstrained scenes. Extraction in such circumstances is problematic and requires noise-resistant algorithms. We describe novel methods that enable generic extraction of moving objects, but particularly walking people, from large outdoor video databases. Combining the techniques into a preprocessing chain, we apply them to the NIST Gait Challenge database. This produces visually good extracted data suitable for biometric use. Analysis of the output by multiple gait biometrics yields encouraging recognition results, which approach those obtained from laboratory quality data.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2004.1300942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

There is an increasing need in biometric deployment, especially gait, for extraction in unconstrained scenes. Extraction in such circumstances is problematic and requires noise-resistant algorithms. We describe novel methods that enable generic extraction of moving objects, but particularly walking people, from large outdoor video databases. Combining the techniques into a preprocessing chain, we apply them to the NIST Gait Challenge database. This produces visually good extracted data suitable for biometric use. Analysis of the output by multiple gait biometrics yields encouraging recognition results, which approach those obtained from laboratory quality data.
应用步态生物识别技术的人体提取系统分析
在生物识别部署中,特别是步态,越来越需要在不受约束的场景中进行提取。在这种情况下提取是有问题的,需要抗噪声算法。我们描述了一种新颖的方法,可以从大型户外视频数据库中提取运动物体,特别是行走的人。将这些技术结合到预处理链中,我们将它们应用于NIST步态挑战数据库。这产生了适合生物识别使用的视觉上良好的提取数据。对多种步态生物特征输出的分析得到了令人鼓舞的识别结果,接近实验室质量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信