Benoît Labbé, David Chesneau, B. Allard, X. Lin-Shi
{"title":"Modeling and design of an integrated sliding-mode buck converter with regulated switching frequency suitable for mobile devices","authors":"Benoît Labbé, David Chesneau, B. Allard, X. Lin-Shi","doi":"10.1109/ECCE-ASIA.2013.6579211","DOIUrl":null,"url":null,"abstract":"Mobile applications necessitate nowadays huge digital resources. Power management of digital circuits is based on dynamic strategies to preserve energy. DC/DC converters used to supply the digital core face stringent constraints with respect to load transients. Sliding-mode control is well suited to control buck converters that are subject to high dynamic load and line transients. Fixed frequency sliding-mode control has been experimented. Transient performances or silicon area are negatively affected. A new analog implementation of the sliding-mode control with switching frequency control is presented here. The proposed synchronization scheme does not degrade the intrinsic asynchronous transient performances and is not affected by a significant silicon area penalty. The proposed DC/DC converter is implemented in CMOS 130 nm. The switching frequency is kept constant thanks to the frequency regulation loop. The demonstrator achieves more than 80% efficiency from 3mW to 840mW.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Mobile applications necessitate nowadays huge digital resources. Power management of digital circuits is based on dynamic strategies to preserve energy. DC/DC converters used to supply the digital core face stringent constraints with respect to load transients. Sliding-mode control is well suited to control buck converters that are subject to high dynamic load and line transients. Fixed frequency sliding-mode control has been experimented. Transient performances or silicon area are negatively affected. A new analog implementation of the sliding-mode control with switching frequency control is presented here. The proposed synchronization scheme does not degrade the intrinsic asynchronous transient performances and is not affected by a significant silicon area penalty. The proposed DC/DC converter is implemented in CMOS 130 nm. The switching frequency is kept constant thanks to the frequency regulation loop. The demonstrator achieves more than 80% efficiency from 3mW to 840mW.