A Comprehensible Approach to Develop Fuzzy Decision Trees

G. Suma, M. Shashi, G. L. Devi
{"title":"A Comprehensible Approach to Develop Fuzzy Decision Trees","authors":"G. Suma, M. Shashi, G. L. Devi","doi":"10.1109/ICETET.2008.173","DOIUrl":null,"url":null,"abstract":"With the immense increase of the data in various fields, interpreting the data into useful information has become a tedious job. Design of models to handle the problem is essential. This paper discusses the methods that handle uncertain information with continuous data and deliver comprehensible classification model. We investigate fuzzy decision tree as a method for classification problems and axiomatic fuzzy set for building fuzzy sets (membership functions) . To select the best available test attributes of fuzzy decision trees we use a generalized Shannon Entropy. The problems connected with this generalization arised from fuzzy domain are discussed and some alternatives are proposed.","PeriodicalId":269929,"journal":{"name":"2008 First International Conference on Emerging Trends in Engineering and Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2008.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the immense increase of the data in various fields, interpreting the data into useful information has become a tedious job. Design of models to handle the problem is essential. This paper discusses the methods that handle uncertain information with continuous data and deliver comprehensible classification model. We investigate fuzzy decision tree as a method for classification problems and axiomatic fuzzy set for building fuzzy sets (membership functions) . To select the best available test attributes of fuzzy decision trees we use a generalized Shannon Entropy. The problems connected with this generalization arised from fuzzy domain are discussed and some alternatives are proposed.
一种可理解的模糊决策树开发方法
随着各个领域数据的大量增加,将数据转化为有用的信息已成为一项繁琐的工作。设计模型来处理这个问题是至关重要的。本文讨论了用连续数据处理不确定信息并提供可理解分类模型的方法。我们研究模糊决策树作为分类问题的方法和公理模糊集作为模糊集(隶属函数)的构造方法。为了选择模糊决策树的最佳可用测试属性,我们使用了广义香农熵。讨论了由模糊域引起的与这种泛化有关的问题,并提出了一些替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信