A3GAN: Attribute-Aware Anonymization Networks for Face De-identification

Liming Zhai, Qing Guo, Xiaofei Xie, L. Ma, Yi (Estelle) Wang, Yang Liu
{"title":"A3GAN: Attribute-Aware Anonymization Networks for Face De-identification","authors":"Liming Zhai, Qing Guo, Xiaofei Xie, L. Ma, Yi (Estelle) Wang, Yang Liu","doi":"10.1145/3503161.3547757","DOIUrl":null,"url":null,"abstract":"Face de-identification (De-ID) removes face identity information in face images to avoid personal privacy leakage. Existing face De-ID breaks the raw identity by cutting out the face regions and recovering the corrupted regions via deep generators, which inevitably affect the generation quality and cannot control generation results according to subsequent intelligent tasks (eg., facial expression recognition). In this work, for the first attempt, we think the face De-ID from the perspective of attribute editing and propose an attribute-aware anonymization network (A3GAN) by formulating face De-ID as a joint task of semantic suppression and controllable attribute injection. Intuitively, the semantic suppression removes the identity-sensitive information in embeddings while the controllable attribute injection automatically edits the raw face along the attributes that benefit De-ID. To this end, we first design a multi-scale semantic suppression network with a novel suppressive convolution unit (SCU), which can remove the face identity along multi-level deep features progressively. Then, we propose an attribute-aware injective network (AINet) that can generate De-ID-sensitive attributes in a controllable way (i.e., specifying which attributes can be changed and which cannot) and inject them into the latent code of the raw face. Moreover, to enable effective training, we design a new anonymization loss to let the injected attributes shift far away from the original ones. We perform comprehensive experiments on four datasets covering four different intelligent tasks including face verification, face detection, facial expression recognition, and fatigue detection, all of which demonstrate the superiority of our face De-ID over state-of-the-art methods.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3547757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Face de-identification (De-ID) removes face identity information in face images to avoid personal privacy leakage. Existing face De-ID breaks the raw identity by cutting out the face regions and recovering the corrupted regions via deep generators, which inevitably affect the generation quality and cannot control generation results according to subsequent intelligent tasks (eg., facial expression recognition). In this work, for the first attempt, we think the face De-ID from the perspective of attribute editing and propose an attribute-aware anonymization network (A3GAN) by formulating face De-ID as a joint task of semantic suppression and controllable attribute injection. Intuitively, the semantic suppression removes the identity-sensitive information in embeddings while the controllable attribute injection automatically edits the raw face along the attributes that benefit De-ID. To this end, we first design a multi-scale semantic suppression network with a novel suppressive convolution unit (SCU), which can remove the face identity along multi-level deep features progressively. Then, we propose an attribute-aware injective network (AINet) that can generate De-ID-sensitive attributes in a controllable way (i.e., specifying which attributes can be changed and which cannot) and inject them into the latent code of the raw face. Moreover, to enable effective training, we design a new anonymization loss to let the injected attributes shift far away from the original ones. We perform comprehensive experiments on four datasets covering four different intelligent tasks including face verification, face detection, facial expression recognition, and fatigue detection, all of which demonstrate the superiority of our face De-ID over state-of-the-art methods.
基于属性感知的人脸去识别匿名化网络
人脸去识别(De-ID)是一种去除人脸图像中的人脸身份信息,避免个人隐私泄露的技术。现有的人脸De-ID通过对人脸区域进行切割,并通过深度生成器恢复损坏的区域,从而破坏了原始身份,这不可避免地影响了生成质量,无法根据后续的智能任务(如人脸识别)控制生成结果。(面部表情识别)。本文首次从属性编辑的角度思考人脸去标识问题,将人脸去标识表述为语义抑制和可控属性注入的联合任务,提出了一种属性感知匿名化网络(A3GAN)。直观地,语义抑制去除嵌入中的身份敏感信息,而可控属性注入则沿着有利于De-ID的属性自动编辑原始人脸。为此,我们首先设计了一个多尺度语义抑制网络,该网络采用一种新颖的抑制卷积单元(suppressive convolution unit, SCU),可以沿多层深度特征逐步去除人脸身份。然后,我们提出了一种属性感知注入网络(AINet),该网络可以以可控的方式(即指定哪些属性可以更改,哪些不能更改)生成de - id敏感属性,并将其注入到原始人脸的潜在代码中。此外,为了实现有效的训练,我们设计了一种新的匿名化损失,使注入的属性远离原始属性。我们在四个数据集上进行了全面的实验,涵盖四种不同的智能任务,包括面部验证,面部检测,面部表情识别和疲劳检测,所有这些都证明了我们的面部De-ID优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信