Application of least angle regression methods for image reconstruction in EIT

T. Rymarczyk, P. Adamkiewicz, E. Kozłowski
{"title":"Application of least angle regression methods for image reconstruction in EIT","authors":"T. Rymarczyk, P. Adamkiewicz, E. Kozłowski","doi":"10.1109/IIPHDW.2018.8388350","DOIUrl":null,"url":null,"abstract":"The highly correlated predictors with each other's in linear models do not allow to determine the precisely influences of these predictors on the output variable. Directly application the least square method to estimate the unknown parameters may lead to a poor prediction. The addition of penalty depending on quantities of parameters to the least square criterion allows us to determine the biased estimators but also to reduce the variance of estimators. The Least Angle Regression was used to reconstruct the image in electrical impedance tomography.","PeriodicalId":405270,"journal":{"name":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPHDW.2018.8388350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The highly correlated predictors with each other's in linear models do not allow to determine the precisely influences of these predictors on the output variable. Directly application the least square method to estimate the unknown parameters may lead to a poor prediction. The addition of penalty depending on quantities of parameters to the least square criterion allows us to determine the biased estimators but also to reduce the variance of estimators. The Least Angle Regression was used to reconstruct the image in electrical impedance tomography.
最小角度回归方法在EIT图像重建中的应用
线性模型中相互高度相关的预测因子不允许确定这些预测因子对输出变量的精确影响。直接应用最小二乘法对未知参数进行估计可能会导致预测效果不佳。根据参数的数量对最小二乘准则进行惩罚,使我们能够确定有偏估计量,同时也减少了估计量的方差。采用最小角度回归方法对电阻抗断层成像图像进行重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信