Mobile device to cloud co-processing of ASL finger spelling to text conversion

P. Hays, R. Ptucha, R. Melton
{"title":"Mobile device to cloud co-processing of ASL finger spelling to text conversion","authors":"P. Hays, R. Ptucha, R. Melton","doi":"10.1109/WNYIPW.2013.6890987","DOIUrl":null,"url":null,"abstract":"Computer recognition of American Sign Language (ASL) is a computationally intensive task. This research investigates transcription of static ASL signs on a consumer-level mobile device. The application provides real-time sign to text translation by processing a live video stream to detect the ASL alphabet as well as custom signs to perform tasks on the device. The chosen classification algorithm uses Locality Preserving Projections (LPP) as manifold learning along with Support Vector Machine (SVM) multi-class classification. The algorithm is contrasted with and without cloud assistance. In comparison to the local mobile application, the cloud-assisted application increased classification speed, reduced memory us-age, and kept the network usage low while barely increasing the power required.","PeriodicalId":408297,"journal":{"name":"2013 IEEE Western New York Image Processing Workshop (WNYIPW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Western New York Image Processing Workshop (WNYIPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2013.6890987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Computer recognition of American Sign Language (ASL) is a computationally intensive task. This research investigates transcription of static ASL signs on a consumer-level mobile device. The application provides real-time sign to text translation by processing a live video stream to detect the ASL alphabet as well as custom signs to perform tasks on the device. The chosen classification algorithm uses Locality Preserving Projections (LPP) as manifold learning along with Support Vector Machine (SVM) multi-class classification. The algorithm is contrasted with and without cloud assistance. In comparison to the local mobile application, the cloud-assisted application increased classification speed, reduced memory us-age, and kept the network usage low while barely increasing the power required.
移动设备向云协同处理手语手指拼写到文本的转换
美国手语的计算机识别是一项计算密集型的任务。本研究调查了静态美国手语在消费者级移动设备上的转录。该应用程序通过处理实时视频流来检测ASL字母以及在设备上执行任务的自定义标志,从而提供实时符号到文本翻译。所选择的分类算法采用局部保持投影(Locality Preserving Projections, LPP)作为流形学习,并结合支持向量机(Support Vector Machine, SVM)进行多类分类。该算法在有云辅助和没有云辅助的情况下进行了对比。与本地移动应用程序相比,云辅助应用程序提高了分类速度,减少了内存消耗,保持了较低的网络使用率,同时几乎没有增加所需的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信